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1. Executive Summary 

TIME-FREQUENCY RECEIVERS FOR NONSTATIONARY INTERFERENCE 
EXCISION IN SPREAD SPECTRUM COMMUNICATIONS SYSTEMS 

This is the final report that includes all results of the research work performed 

under the contract # F30602-96-C-0077 with the Air Force Research Laboratory 

(Previously, Rome Lab), Rome, NY over the period from January Is', 1996 to July 31st, 

1999. The research project is titled "Time-Frequency Receivers For Nonstationary 

Interference Excision In Spread Spectrum Communications Systems." This report 

includes contributions from Professor Moeness Amin (Principle Investigator), Dr. Alan 

Lindsey (AFRL), Dr. Adel Belouchrani (Postdoctoral Fellow), Dr. Ismail Jouny (Visiting 

Professor), Mr. Chenshu Wang (Graduate Student), Ms. Xuemei Ouyang (Graduate 

Student), Mr. Steve Lach (Graduate Student), and Mr. Sekhar Ramineni (Graduate 

Student). Below, we summarize the major advances made by the above contributors to 

the general area of interference mitigation in direct sequence spread spectrum 

communications (DSSS) for a single and multi-antenna receivers, and include in the 

appendix copies of all journal and conference papers published under the support of this 

contract. Assuming that the two final papers submitted to the IEEE Transactions on 

Signal Processing will eventually be accepted for publications, then we are pleased to 

report that the F30602-96-C-0077 contract has produced one book chapter, eleven journal 

articles, nineteen conference papers, and nine technical reports. Copies of the book 

chapter as well as all journal and conference papers are included in the appendix. 



The principle contribution of the research work under this contract is in advancing 

the theory of time-varying spectrum analysis and its applications to the two important 

areas of communications and sensor array processing. The research team at Villanova 

University has pioneered the development of a single antenna and multi-sensor receivers 

based on quadratic time-frequency and joint-variable distributions. We have provided the 

theoretical framework for solving blind source separation and direction finding problems 

using bilinear transforms, and established the fundamental role of time-frequency 

distributions for the rejection of nonstationary interferers in direct sequence spread 

spectrum communication systems. We have utilized the time-frequency signatures of 

signal arrivals for improved detection, angle-of-arrival estimation, and blind signal 

recovery. We were also the first to use the signal power distributions in the time- 

frequency domain for optimum excision of smart jammers and mitigation of a large class 

of undesired waveforms through time-varying filtering, least-square synthesis methods, 

short time Fourier transforms, and subspace projection techniques. 

Below, we state our major contributions in each of the following seven areas: 1) 

Notch filtering approach for nonstationary interference excision in direct sequence spread 

spectrum (DSSS) communications, 2) Spatial time-frequency distributions and array 

signal processing for DSSS communications, 3) Broadband interference excision for 

software radio DSSS communications using time-frequency distribution synthesis, 4) 

Linear interference excision in DSSS communications using short time Fourier 

transforms, 5) Interference excision in DSSS communications using projection 

techniques, 6) High resolution time-frequency distributions, 7) Broadband interference 

mitigation in multi-sensor arrays using wavelets and subbands. 



1.1 Notch Filtering Approach for Nonstationary Interference Excision in DSSS 
Communications 

The first problem tackled is the suppression of nonstationary interference using a 

notch filtering approach. The main difference between our work in this area and previous 

contributions is that the position of the filter notch is set by the estimate of the 

interference instantaneous frequency (IF). Although, there are several techniques devised 

in the literature for IF estimation for a mono-component and multi-component signal, the 

prime focus has been set on the new and powerful tool of time-frequency distributions. 

There were three phases of research on this topic, namely, regress analysis and 

improvement of the IF-based interference suppression techniques in DSSS 

communications; devising an optimum receiver for mitigation of the nonstationary 

jammer using both its amplitude and instantaneous frequency estimates; and development 

of fast implementation algorithms for IF estimates from TFDs, 

In the first phase, analyses of the open-loop adaptive filtering for interference 

excision spread spectrum communication receiver were provided. We focused on a class 

of jammers that are characterized by their IFs. Multiple-zero FIR filters whose notches 

are in synchronization with the jammer IF have been applied to remove the jammer 

power at every time-sample. These filters are described by three parameters, namely the 

zero location, the zero multiplicity, and the group delay. Expressions of the receiver SNR 

incorporating these three parameters have been derived. It is shown that for improved 

receiver performance, the filter group delay must depend on the filter zero multiplicity, 

specifically, even-multiplicity excision filters must be of zero-phase. Higher order 

interference excision filters than those of three and five taps have been proposed for two 



primary reasons. First, these filters have broad notches, which will tolerate reasonable 

bias in the jammer IF estimate. Second, broad notch filters are more effective in excising 

the jammer energy when it is widely spread around the instantaneous frequency. The two 

specific cases of three- and five-coefficient filters and their corresponding correlator 

outputs and signal-to-noise ratios, which had already been devised in the literature, were 

shown to be special cases of the proposed general interference excision approach. 

In the second phase, an optimum open-loop adaptive notch filtering approach for 

interference excision in PN spread spectrum communications was developed. It has been 

shown that the FIR filter with variable depth notch that partially removes the jammer 

achieves significantly higher receiver SNR over both extreme cases of full jammer 

excision and no excision. The optimum performance is reached by trading off the jammer 

power and the filter self noise.   The filter notch is controlled by a new parameter whose 

optimum value is a function of the jammer power.   For the three-coefficient interference 

excision filter, the expression for the optimum parameter value can be obtained by 

solving for a root of a third-order polynomial under both fixed frequency and randomly 

changing jammer IF.    On the other hand, one should seek a numerical solution in the 

case of the five-coefficient filter, due to the difficulty in getting the solution in a closed 

form.  Several examples have been generated that clearly illustrated the improvement in 

the receiver signal-to-noise ratio achieved by using the optimum excision filter over both 

cases of preprocessing disabled and preprocessing enabled, but only based on the jammer 

IF information. This improvement is exhibited over a wide range of jammer-to-signal 

ratios (JSR) and is shown using exact values of interference amplitude and IF. As in 

the   case   of   IF-based   interference   excision,   the   noise   and   the   kernel   both 



affect the estimation of these two parameters when applying TFDs, and yield a lower 

performance than the case when using exact values. 

In the third phase, two zero tracking algorithms were introduced for IF estimation. 

Both algorithms operate on the local autocorrelation function of the time-frequency 

distribution and construct a spectral polynomial whose zeros correspond to the IFs of the 

multicomponent signal. The zero trajectories of this polynomial are either provided by 

using the sensitivity formula relating, to the first order approximation, the changes in the 

polynomial coefficients and roots, or by applying Newton's method for zero finding. The 

sensitivity formula requires all polynomial zeros to be updated simultaneously. That is, 

the zeros corresponding to the signal autoterms cannot be tracked separately from those 

that represent cross-terms or extraneous. As such, this method becomes computationally 

prohibitive for high polynomial orders, i.e., large extent of the local autocorrelation 

function. From the performance perspective, it has been shown that Newton's method 

outperforms zero-tracking based on the sensitivity formula, specifically under low signal 

to noise ratio.    In low SNR cases, the spectral polynomial extraneous zeros are 

significantly perturbed.   This perturbation propagates to the signal zero trajectories, 

leading to tremendous bias in the IF estimates. The employment of the Choi-Williams 

(CW) distribution kernel may, however, rectify this situation due to its effects on the 

noise components. The advantage of Newton's method is that we may only track a 

specific signal root, which simplifies the spectral polynomial zero-tracking operations. 

However, in rapidly time-varying environment and closely separated frequency 

components, we stand to lose the signal true zero trajectories to others corresponding to 

extraneous or cross-term zeros. To mitigate this problem, we have introduced an 



extension of Newton's method for TFD applications. This extension was stemmed from 

the fact that the TFD provides the signal power distribution over time and frequency and 

may be frequently used to discriminate between true and extraneous signal components. 

We have shown improved tracking using the extended version over the original version 

of Netwon's method for different nonstationary signals. 

1.2 Spatial Time-Frequency Distributions and Array Signal Processing for DSSS 
Communications 

The research involving jammer mitigation in DSSS systems using multi-sensor 

array receivers have gone through three different phases. The first phase did not deal with 

the DSSS communication per say, but rather developed a general framework for 

integrating TFDs in array processing. The second and the third phases both utilized the 

differences in both the time-frequency and spatial signatures of the DSSS and the 

interference source signals to achieve improved receiver performance. 

In the first phase of the research on muti-sensor array receivers, a new blind 

separation approach using spatial t-f distributions (STFDs) was introduced. This 

approach has been devised to primarily separate sources with temporal nonstationary 

signal characteristics. This new approach is based on the joint diagonalization of a 

combined set of spatial t-f distribution matrices, which are made up of the auto and cross- 

TFDs of the data snap shots across the multisensor array, and are expressed in terms of 

the TFD matrices of the sources. The TFD matrices of the data and sources appear, 

respectively, in place of the spatial and signal correlation matrices commonly used under 

stationary environments. The diagonal structure of the TFD matrix of the sources is 

essential for the proposed approach and is enforced by incorporating only the t-f points 



corresponding to the auto-terms. The off-diagonal elements are cross-terms that become 

negligible by using a reduced interference distribution kernel. We have focused on TFDs 

of Cohen's class; however, we can use, for the same purpose, any other bilinear t-f 

distributions and signal representation, such as the affine and hyperbolic classes. The 

proposed approach has shown a number of attractive features. In contrast to blind source 

separation approaches using second order and/or high-order statistics, the proposed 

approach allows the separation of Gaussian sources with identical spectral shapes but 

with different t-f localization properties. The effect of spreading the noise power while 

localizing the source energy in the time-frequency domain amounts to increasing the 

robustness of the proposed approach with respect to the noise. We have run several 

experiments of simple nonstationary signals as well as real data. These experiments have 

demonstrated the effectiveness of the proposed technique in separating a wide class of 

signals. The asymptotic performance analysis of the proposed technique has also been 

provided. 

In the second phase of research on multi-sensor array receivers, we proposed an 

efficient two sensor blind beamformer for single jammer mitigation in spread spectrum 

communication systems based on second-order statistic blind identification of the channel 

coefficients. This second order identification has been made possible because of the 

difference in the temporal properties between the spread spectrum signal and the jammer. 

Closed form expressions of the channel coefficients have been derived. Analytical 

expressions of the optimum beamformer weights have been compared from the 

perspective of maximum signal to interference plus noise ratio (SINR) at the output of the 

demodulator. Three structure designs of the mitigation receiver have been suggested. In 



solving the underlying problem, the second order channel identification (SOCI) has been 

compared with the well known JADE in terms of both computational cost and the 

achieved SINR. It has been shown that, while SOCI has a low computational cost, it 

provides a comparable performance of JADE when the asymptotic conditions are 

reached. Because of the inherent ambiguity related to the general blind problem solved 

by the JADE algorithm, a selection of the desired signal signature and the jammer 

signature from the estimated signatures should be performed. Therefore, some a priori 

knowledge of the desired signal is needed in association with the JADE. In contrast, the 

proposed SOCI does not need this extra processing, since it implicitly selects the desired 

signature during the identification process. 

In the third phase of the research on multi-sensor array receiver, we introduced a 

new jammer mitigation scheme for DSSS communications. Blind source separation 

techniques were applied to increase the interference rejection capability of the DSSS 

communication systems. The main motivation behind the proposed approach was to 

further immune the DSSS system against strong interference and its multipath. With the 

inclusion of blind source separation methods, the overall DSSS receiver consists of a 

single separator, selector, and despreader, followed by a detector. Closed form 

expressions of the receiver signal-to-noise ratios have been derived. BER curves were 

provided for multipath and coherent signal environments. These curves have clearly 

shown the significant reduction in the bit error rates when employing blind source 

separations. 



1.3 Broadband Interference Excision for Software Radio DSSS Communications 
Using Time-Frequency Distribution Synthesis 

Our contribution in this area has been the mitigation of broadband nonstationary 

interference in DSSS communication systems by jammer signal synthesis. Jammer 

suppression is achieved by subtracting an estimate of the interference from the received 

signal. This estimate is obtained by masking out the signal and noise components of the 

received data in the time-frequency domain, and synthesizing the result. When the 

interference is known a priori to be a polynomial phase, which is uniquely described by 

its instantaneous frequency characteristics, an improved estimate can be generated by 

projecting the synthesized jammer estimate onto a circle of its constant modulus. The 

direct synthesis of the spread spectrum signal, rather than the interference from the time- 

frequency domain is shown to be undesirable due to lack of clear t-f signature, the 

retention of the jammer power in its sidelobes, cross-terms of the signal, noise, jammer 

spreading over the entire t-f domain, and the loss of meaningful phase reference. A 

method for extending this technique to the multi-jammer scenario where each term of the 

interference is of constant modulus is also presented. Computer simulations were 

performed using two masking techniques. It was shown that the lowest bit-error rates are 

obtained when the jammer estimate is the result of both a phase-matching and a 

projection operation on a correctly masked t-f distribution. The implementation of this 

technique in the simulations showed that different masks should be applied to the TFD of 

the received signal, depending on the relative power of the interference. 

In software radio architectures, the system has the discretion to invoke the proper 

algorithms, such as the one provided, should a specific jammer type appear. When no 

10 



interference signal is present, the receiver should disable preprocessing of the received 

signal, and rely solely on the spreading gain inherent in DSSS. As the nature of the 

interference changes and a jammer appears, the receiver can take some corrective action 

and changes modes, depending on the situation. When a single jammer that is of constant 

modulus is detected, the method described in this paper becomes applicable. On the 

other hand, when the jammer is amplitude modulated, more appropriate algorithms may 

be invoked. Although these interference excision techniques are computationally 

demanding, the processing power of the spare channel on the multiband, multimode 

system may be dedicated to them when only channel is in use. By so doing, a signal lost 

in broadband nonstationary interference may often be recovered. 

1.4 Linear Interference Excision in DSSS Communications Using Short Time 
Fourier Transforms (STFTs) 

For linear interference excision, a new adaptive time-frequency technique for 

interference excision in direct sequence spread spectrum communication has been 

introduced. The proposed technique implements recursive analysis windows to allow 

efficient generation of a large class of STFTs with different spectral/temporal resolution 

properties. Concentration measures were applied to select the analysis window that 

provides the best jammer time-frequency power concentration. The jammer signal is 

excised in t-f domain using a binary mask. Central to our contribution is the 

demonstration that the strength as well as the localization of the jammer power in the t-f 

domain affects the STFT receiver performance. This demonstration underscores the fact 

that knowledge of the type of the interference excision system deployed at the receiver 

can be exploited by the jammer to reduce the system effectiveness to interference 

11 



suppression. We have also derived the optimum receiver for interference excision based 

on STFT analysis. Traditional detectors correlate the receiver PN sequence with the 

reconstructed PN sequence after interference excision. The proposed optimum scheme, 

however, takes into account the distortion of the PN sequence caused by the jammer 

cancellation and is shown to yield enhanced receiver performance. Simulation results 

have shown significant improvement in the receiver SNR when the optimum receiver is 

implemented in place of its suboptimum counterpart. 

1.5 Interference Excision in DSSS Communications Using Projection Techniques 

We have explored the applicability of subspace techniques to nonstationary 

interference excision in DSSS communications. We continued to focus on FM 

interference signals that are uniquely characterized by their instantaneous frequencies 

(EFs). In the proposed subspace technique, the received data over one symbol period is 

partitioned into blocks. The data in each block is projected on the subspace orthogonal to 

the respective interference subspace, which is provided using the IF estimate. The 

projected results are then combined and correlated with the PN sequence at the receiver. 

Closed form expressions of the receiver SINR have been derived. From these 

expressions and computer simulations, the performance of the proposed receiver 

implementing preprocessing subspace techniques has been evaluated as a function of the 

number of blocks and the noise variance. It has been shown that the receiver performance 

deteriorates when excision is separately performed on successive data blocks rather than 

over the entire symbol period. We have compared the proposed projection approach with 

the recently introduced notch filtering techniques for nonstationary interference excisions 

12 



in DSSS. The comparison has shown that subspace techniques outperform the notch filter 

approach in all jamming cases. 

1.6 High Resolution Time-Frequency Distributions 

We have introduced a new class of time-frequency distribution kernels. The 

members of this class satisfy the desirable time-frequency properties for power 

localization in nonstationary environment, yet they produce local autocorrelation 

functions (LAF) that are amenable to exponential deterministic modeling during periods 

of stationarity. The proposed high spectral resolution kernels are required to meet two 

basic conditions: 1) the frequency marginal 2) an exponential behavior in the ambiguity 

domain for constant values of the frequency lag. In dealing with sinusoidal data, the first 

property guarantees that the autoterm sinusoids in the local autocorrelation function are 

undamped. The second property enforces an exponential damping on all crossterms. As a 

result, the sinusoidal components in the data translate into damped/undamped sinusoids 

in the LAF. High-resolution techniques such as reduced rank approximation of the 

backward linear prediction data matrix can then be applied for frequency estimation. All 

simulations were presented using noise-free signals. The effect of the noise on the 

performance of the proposed class of kernels was briefly discussed. 

1.7 Broadband Interference Mitigation in Multi-sensor Arrays Using Wavelets 
and Subbands 

We have examined the problem of mitigation of multipath interference in multi- 

sensor array receivers using wavelets and subands. Our work has dealt with narrowband 

13 



as well as broadband signal arrivals, and uncorrelated as well as coherent signal 

environments. Performance analysis of subbands for both sensor-space and beamspace 

processing of the source signals impinging on the array has been provided. 

14 
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1. Introduction 

Time-frequency distributions (TFDs) have re- 
cently been shown to be a powerful alternative for 
instantaneous frequency estimation in rapidly 
time-varying environments [5]. These distributions 
do not assume a model which is signal specific, as in 
the case of extended Kaiman filters [2], nor are 
they encumbered by high computational require- 
ments, as in the case of hidden Markov models 
[12]. Further, TFDs can handle multicomponent 
signals, and as such outperform existing techniques 
which are only applicable to a single tone scenario 
[8]. Finally, TFDs are able to handle signals with 
rapidly changing IF for which adaptive filter tech- 
niques, such as RLS and LMS, fail [3,6]. 

Because of the localization properties of time- 
frequency distributions, the location of the spectral 
peak at time n represents the signal instantaneous 
frequency. Cohen's class of TFDs are obtained by 
taking the Fourier transform of the local autocorrela- 
tion function (LAF), which captures both the local 
spectral and temporal characteristics of the signal. 
The LAF is computed by time-averaging the bilinear 
data products. The averaging is performed by ap- 
plying a kernel which acts to satisfy several desirable 
time-frequency properties [5]. In order to provide 
a high temporal resolution TFD, the fast Fourier 
transform (FFT) should be applied at every data 
sample. At each time instant, it is important to choose 
a long FFT block length to properly locate spectral 
peaks, and subsequently provide a good estimate of 
the signal IFs. This may require extending the data 
record to include more samples, or by zero padding. 

In this paper, the cost of constructing the TFD 
by applying a high resolution FFT on a data 
sample by a data sample basis along with a peak 
picking search routine can be avoided by directly 
extracting the IF information from the LAF with- 
out Fourier transformation. By forming a spectral 
polynomial for which some roots are located on the 
unit circle at the TFD peak positions, Newton's 
method for root finding [4,7,10] can be used as 
a zero-tracking algorithm to provide the poly- 
nomial zero trajectories and subsequently the sig- 
nal instantaneous frequencies. This technique both 
simplifies and improves instantaneous frequency 
estimation, which are the same two motivations 

behind zero-tracking adaptive filters techniques in- 
troduced by Orfanidis and Vail [9]. Further, the 
recent application of TFD in interference removal 
in direct sequence spread spectrum (DS/SS) com- 
munication [1] relies on excision filter zeros, which 
are placed at the jammer IFs. 

With Newton's method, tracking of each zero 
operates independently with computational com- 
plexity 0{N). Independent tracking of the poly- 
nomial roots can also be achieved using other root 
finding methods such as Bisection, Ridders' and 
Laguerre's methods [10]. In this paper, however, 
we focus on Newton's method because of its moder- 
ate computational complexity, fast quadratic con- 
vergence, and the simplicity of generating the 
spectral polynomial derivatives. 

2, TFD spectral polynomials 

Let R„{[) represent the local autocorrelation func- 
tion (LAF) at time n and lag /. Cohen's class of 
time-frequency distributions in the discrete form is 
given by 

Lll 

iU/)e -j2ol 

-LI2 
(1) 

where L is the maximum lag of interest, and /?„(/) is 
given by 

1/2 

*-(')=     £     xl>{n-m,l)x(m + I)x*(m-l),       (2) 
m=-L/2 

where \p(n, I) = t^*(n, - /) is the,time-frequency (t-f) 
two-dimensional kernel of finite extent over the 
time-time-lag domain. For Wigner distribution. 
\}/(nJ) = <5(n), whereas for Choi-Williams distribu- 
tion, \l>{n,t) = (l/y4n/7<r) exp (- n2/(4/2/<r)). Both 
kernels satisfy the instantaneous frequency constraint 
[5]. pie"°) is a real-valued function which peaks at 
several frequencies including the instantaneous fre- 
quencies of the multicomponent signal,1 which are 
denoted by co,(n), w2(ri), ..., o>M(n). Accordingly, 

dct> oMii).l«i«M 

1/2 

=-j2 i /*„(/*- 
l=-L/2 

j2wfi 
M>),Ki«M = 0. (3) 

1 The bias in the peak location is dictated by the employed t-f 
kernel. 
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Substituting ei2a: and multiplying by z112, Eq. (3) 
can be rewritten as 

m 
£    /7U/)Z-'-

ML/2'= 0, (4> 
1--U2 

which is the Lth-order spectral polynomial 

m=°M + «JM* + a»®z2 + - + a-(L)zL = °- 
aJU) = {-l + L/2)Rn(-l + L/2). (5) 

The power series (5) is referred to as the TFD 
spectral polynomial. The signal instantaneous fre- 
quencies correspond to roots of f„{z) in the ex- 
ponential form of exp(j2cof), 1 t^i^M, and 
therefore can be directly deduced from the poly- 
nomial's zero trajectories. In addition to the signal 
autoterm zeros, the spectral polynomial (5) has 
both signal cross-term zeros and extraneous zeros. 

It becomes difficult, therefore, to distinguish be- 
tween the signal autoterm zeros and others. If a sig- 
nal autoterm zero moves close to an extraneous 
zero, the zero-tracking algorithm may lock into the 
"wrong" zero and loses the true trajectory. We 
place several modifications of the zero-tracking al- 
gorithm to circumvent this problem, as discussed in 
Section 4. 

3. Zero-tracking algorithms 

A well-known numerical root finding method. 
Newton's method [7,10], is very suitable for the 
underlying problem. Given the form of the poly- 
nomial (5), the ith root can be found from 

(6) 

where k is the iteration number. If the initial guess 
of the root, z{°\i), is in the neighborhood of the 
exact root, then the Newton's method is quadra- 
tically convergent. 

It is assumed that the IF corresponding to the ith 
root is changing over adjacent time samples such 
that the root at the nth time sample is in the 
neighborhood of the new root at time n + 1. 
Newton's method can then be applied by using the 
last root value as the initial guess in Eq. (6). Due to 
the quadratic convergence, the new root, and sub- 

sequently the corresponding IF, will be quickly- 
reached after very few iterations. 

Fig. 1 shows the IF estimates and the zero trajec- 
tories of Wigner-Ville (WV) distribution spectral 
polynomial of order L = 14, using both the sensi- 
tivity formula and Newton's method. The sensitiv- 
ity formula relates to the first-order approximation, 
the changes in the polynomial coefficients and 
roots [9]. The signal is chosen as a chirp with 20 dB 
SNR. It is clear that Newton's method outperforms 
the sensitivity method, which yields a substantial 
bias and deviation from the exact value of IF. In the 
next section, we propose several modifications of 
Newton's method to improve its performance in 
the TFD context. 

4. Extended Newton's method for TFD applications 

If there is a low signal-to-noise ratio (SNR), fast 
changing IFs, or multicomponent signals, a situ- 
ation may arise in which the incorrect zero is 
tracked. This may occur if we start with an ex- 
traneous zero and follow its trajectory, or by start- 
ing with the correct zero and lose its trajectory to 
another one which is extraneous. In order to cir- 
cumvent, or at least mitigate, this problem, we 
propose the following four guidance procedures to 
augment Newton's method. These procedures stem 
from the fact that the underlying spectral poly- 
nomial is derived from the TFD, which, if needed, 
can be computed at specific time and frequency 
samples and employed to rectify any potential 
problems associated with the use of the conven- 
tional zero-tracking, as discussed below. 

4.1. Zero-tracking correction 

This correction is needed to find the exact roots 
corresponding to the IFs at the initial stage of 
tracking and whenever tracking of the correct roots 
is lost due to fast changing IF or spectral resolution 
problems. In this case, we compute the TFD and 
apply peak picking routines to find the IFs and 
thereby identify or redefine the signal zeros. 
Reduced interference distributions [11] should be 
used to avoid selecting the signal cross-term zeros. 
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Fig. 1. Zero-tracking of a chirp signal using Wigner-Ville kernel with 14 roots: (a) IF estimate by Newton's method, (b) IF estimate 
using the sensitivity formula, (c) zero diagram of Newton's method, (d) zero diagram using the sensitivity formula. 

4.2. Power monitor 

To avoid tracking the wrong trajectory, we fre- 
quently monitor the power of the signal at the IF 
<o,{n), 

P(a>,{n))=    I    RAn*-*2-*»1. (7) 
f=-L,2 

When the above power is lower than a threshold. 
t\, it is declared that the algorithm has lost the 

correct zero. The zero-tracking correction must 
then be invoked. This method is most applicable to 
constant envelope signals where the power is time- 
invariant. It can be readily shown that the power in 
the above equation can be evaluated at no addi- 
tional cost to the overall algorithm. The threshold 
value may depend on the application. For example, 
when TFD is used in DS/SS communications.;/ can 
be set in direct relation to the bit error rate (BER). 
In this case, high BER becomes indicative of poor 
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Fie. 2. Sinusoidal IF. SNR = 5 dB. )4 roots: la) CW distribution, onecorreclion found (b) WV distribution, three corrections found, (c) 
spectrogram, four corrections found, (d) WV distribution, no correction is applied during tracking. 

tracking and zero-tracking correction should then 
be invoked. 

4.3. Loss of resolution 

Due to the finite extent of the LAF, or equiva- 
lently, the finite order of the polynomial in Eq. (5), 
two closely spaced IFs will appear as a single peak 
in the TFD, and subsequently, will be represented 
by one zero in the corresponding polynomial. In 
this case, two zero trajectories will merge into one. 
In time-varying environment, loss of resolution 
may, however, last for small periods of time. For 
example, in the case of two crossing chirps, only the 

vicinity of the intersection point represents a res- 
olution problem. Once the two chirps move farther 
apart, TFD should depict two peaks corresponding 
to the autoterms, and subsequently, the tracking 
algorithm should again yield two signal zero trajec- 
tories. When two zeros merge to a single root, we 
record the maximum power at the merged fre- 
quency via Eq. (7). When this value significantly 
drops, the algorithm should go to the correction 
technique to find the new roots. Again, RID kernels 
should be used for fast attenuation of cross-terms, 
which may persist at the intersection frequency 
upon separation. We maintain that in DS/SS com- 
munication applications [IX the BER can be used 
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5. Simulations 

Fig. 3. Two crossing chirps, SNR = 20 dB, 32 lags: (a) WV 
distribution, two corrections found, (b) 128 points FFT peak 
picking. WV kernel. 

as a measure ofloss of resolution and, in general, of 
how well the tracking algorithm is performing. An 
increase in the BER should trigger the zero-track- 
ing correction phase of the algorithm to reset the 
proper conditions. 

4.4. Convergence monitor 

Newton's method diverges if \f(z{ky)\ > 
|/(z"_1))|. In the underlying problem, this means 
that the root-finding method has lost convergence, 
and the correction technique must be applied. 

Fig. 2 shows the case of a low SNR single tone 
fast changing complex sinusoidal FM signal with 
SNR = 5 dB. In this case, the Choi-Williams distri- 
bution kernel [5] based zero-tracking algorithm 
yields good IF estimates with only one correction, 
which is needed for initialization, whereas both the 
WV distribution kernel and spectrogram-based 
zero tracking algorithms require several zero- 
corrections to yield reasonable IF estimates (see 
Fig. 2(b,c)). Fig. 2(d) depicts the case of WV distri- 
bution when no corrections are applied. The unext- 
ended version of Newton's method has resulted in 
the loss of the true signal trajectory. 

Finally, we considered in Fig. 3 two crossing 
complex chirps. To achieve better spectral resolu- 
tion, a high polynomial order is considered. We 
choose L = 30, and as such, WV distributions spec- 
tral polynomials have 30 roots. By comparing Fig. 
3(a) with Fig. 3(b), the instantaneous frequency 
estimated using zero-tracking WV distribution is 
more robust to the effects of cross-terms than that 
provided by TFD peak-picking. This is mainly be- 
cause, when no corrections are necessary, zero- 
tracking does not depend on the relative power of 
the auto- and cross-terms in the t-f domain. 

6. Conclusions 

A zero-tracking algorithm based on Newton's 
method for zero finding has been introduced for 
instantaneous frequency estimation. This algo- 
rithm operates on the local autocorrelation 
function of the time-frequency distribution and 
constructs a spectral polynomial whose zeros cor- 
respond to the IFs of the multicomponent signal. 
The primary advantage of Newton's method is that 
tracking may only be performed for the derived 
signal root, which simplifies the spectral poly- 
nomial zero-tracking operations. However, in rap- 
idly time-varying environment and closely 
separated frequency components, we stand to lose 
the signal true zero trajectories to others corre- 
sponding to extraneous or cross-term zeros. To 
mitigate this problem, the paper has presented an 
extension of Newton's method for TFD applications. 
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This extension is stemmed from the fact that the 
TFD provides the signal power distribution over 
time and frequency and may be frequently used to 
discriminate between true and extraneous signal 
components. 
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Communications Using Open-Loop Adaptive Filters 
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Abstract—A generalized approach for interference suppression 
. in PN spread-spectrum communications using open-loop adaptive 

excision filtering is introduced. The excision filter coefficients 
under this technique depend on the jammer power and its 
instantaneous frequency (IF) information, and both values can 
be gained in the time-frequency domain. The dependency of the 
excision filler characteristics on the interference power, which 
was absent in past contributions in this area, is of significant 
importance as it allows optimum tradeoff between interference 
removal and the amount of self-noise generated from the in- 
duced correlation across the PN chip sequence, due to filtering. 
This tradeoff is bounded by the two extreme cases of no self- 
noise, which implies preprocessing disabled, and full interference 
excision, which the case previously considered. In this paper, 
we derive the FIR excision filters that maximize the receiver 
signal-to-noise ratio for narrowband interference and discuss the 
generalization to nonstationary jamming environment. 

/nrf«x Terms—Interference excision, spread spectrum commu- 
nications, time-frequency distributions. 

I. INTRODUCTION 

ONE OF the most important applications of direct- 
sequence spread-spectrum (DSSS) communications is 

that of interference mitigation. A DSSS system is defined as 
one in which the transmitted signal is spread over a bandwidth 
much wider than the minimum bandwidth necessary to 
transmit the information [1] by means of a code independent 
of the data. The processing gain of a DS/SS system, generally 
defined as the ratio between the transmission and the data 
bandwidths, provides the system with a high degree of 
interference suppression. Since the availability of the code 
at the receiver enables despreading and recovery of data 
while spreading and suppressing of interference, any level 
of interference rejection can be achieved by using sufficient 
processing gain. This, however, may entail increasing the 
bandwidth of the transmitted signal beyond the limits of the 
available frequency spectrum. Therefore, signal processing 
techniques have been used in conjunction with the DS 
spread spectrum receiver to augment the processing gain, 
permitting greater interference protection without an increase 
in bandwidth [2]. 

Several past contributions deal with the suppression of nar- 
rowband interference [3H5]. For nonstationary interference, 
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adaptive linear prediction methods have been traditionally 
employed to track and remove the time-varying frequency 
characteristics of the interference [6], [7]. Recently, two dif- 
ferent approaches for nonstationary interference excision in 
DS/SS communications based on time-frequency (t-f) anal- 
ysis have been considered for the same task [8J—fll]. One 
approach is linear and based on multiresolution analysis, 
whereas the second approach requires a bilinear transformation 
of the data. In linear transform interference excisions, the data 
is processed using Gabor transform [10], [12], the short time 
Fourier transform [13], [14], the wavelet transform [8], or 
Af-band/subband filter banks [9]. Excision of the correlated 
interference components of the received data is then performed 
by clipping, or gating, the high coefficient values followed by 
inverse transformation to recover the desired signal. Correla- 
tion with the receiver PN sequence can be either performed in 
the time or in the transform domain. 

The recent advances in instantaneous frequency (IF) es- 
timation have motivated a new open-loop adaptive filtering 
approach for nonstationary interference excision in SS com- 
munications [II]. In this approach, the received data is pro- 
cessed by a short-length time-varying finite impulse response 
(FIR) filter with a notch (notches) at the jammer IF or IF's. 
The implementation of IF-based interference excision systems 
utilizing the localization properties of the time-frequency 
distributions (TFD's) has been thoroughly discussed in [9], 
[11], and [15]. Expressions for the general spread spectrum 
receiver SNR incorporating an IF estimate of the time-varying 
interference is derived in [16] using three- and five-coefficient 
open loop adaptive notch filters and extended to multizero FIR 
filters. In the same reference, the effect of the IF estimation 
error on performance is also delineated. 

The main concept behind the open-loop adaptive filtering 
approach to interference excision is to place a filter zero 
synchronous with the jammer. This zero, which is posi- 
tioned on a unit circle with a phase equal to the jammer 
IF, causes an infinite deep notch, and thereby, effectively 
removes the jammer, causing the filter output to be essentially 
jammer free. However, a filter of such zero characteristics 
creates a significant amount of self-noise due to the large 
correlation introduced across the different chips of the PN 
sequence. In a jammer free-environment, the filter self-noise 
has the undesired effect of reducing the receiver SNR far 
below the spreading gain, which is achieved via the spread- 
ing/despreading process of the system. In this case, the best 
solution is tq avoid creating any self-noise by shutting off the 
excision filter. The presence of the jammer gives rise to two 
conflicting requirements: reduction of the jammer power and 
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reduction of the self-noise. The fundamental problem with the 
interference excision system, which is based solely on the IF 
information [11], is that it does not have either the flexibility 
or the mechanism to deal with these requirements. It is noted 
that even under relatively high jammer powcT, the system 
performance is still worse than the case when preprocessing 
is disabled. This situation is intolerable and can be avoided if 
the filter coefficients are properly chosen. 

In this paper, the adaptive open-loop interference excision 
technique is further developed by making it amenable to a 
wide range of jammer-to-signal ratio (JSR). The development 
is based on the fact that several IF estimators also provide 
estimates of the signal amplitudes. For example, TFD's are 
distributions of the signal power over time and frequency, 
and as such, they become unfully utilized if only the IF 
information is considered in the excision process. Using the 
interference amplitude, which could be estimated in the t-f 
plane, the original open-loop adaptive interference excision 
system introduced in [11] is modified such that the location 
of the filter notch is set by the jammer IF, whereas its depth 
is controlled by a new variable, dependent on jammer power. 
This variable is selected to maximize the receiver SNR, and 
as such, achieves the optimum tradeoff between the two 
requirements imposed on the excision system. 

It is noteworthy that although the need to have both the 
instantaneous power and frequency to derive optimum exci- 
sions of the interference advocates the use of TFD [17] and 
clearly distinguishes it from other estimators [18], which either 
provide the IF or are confined to a single component signal, the 
analysis provided in this paper can be used in conjunction with 
any scheme that provides these two values. Following the same 
practice used in the two sequence papers [11], [16], which 
have, respectively, introduced IF based interference excision in 
DS/SS communication using perfect and then perturbed values 
of IF's, we' assume throughout this paper exact knowledge of 
the jammer amplitude and IF. It is recognized that both of the 
above parameters, if estimated, will carry an error, depending 
on the jammer signal characteristics as well as the employed 
estimator. The effect of inaccuracies in both the amplitude and 
IF estimates on the receiver performance is an important com- 
panion of this work, and it is not within the scope of this paper. 

The theoretical development for obtaining the optimum 
excision performance using the three- and five-coefficient 
filters for jammers with fixed IF is given in Section II. The 
expressions for optimum solutions of the filter coefficients are 
generalized and further applied to the nonstationary case in 
Section 111. Section IV highlights the performance improve- 
ment of the new approach through a set of examples and 
computer simulations. For both fixed and time-varying envi- 
ronment, we assume that the interference is either of constant 
modulus or of a slowly varying amplitude over one bit period. 

II. NARROWBAND INTERFERENCE ANALYSIS 

The DSSS signal is given by 

M«) = Y, »(BM* ~ nTJ 
n=l 

where pi(n) represents the output sequence from the PN code 
generator for the Jtth information bit bjt(t-), and L is the PN 
sequence length. The chip pulse q(t) is of duration TC and unit 
energy. The transmitted signal may be expressed as 

3(t) = Y,Ikbk{t-kTh)      . 
.  k 

where 7* represents the binary information sequence, and 
Tt = LTC is the bit interval (reciprocal of the bit rate). The 
PN sequence pt(n) Vn, it is known to both the transmitter 
and the receiver and is assumed to be a segment of identically 
distributed random variables such that p(n) =1,-1 with 
equal probability. Assuming a transmission of a signal bit "1," 
we drop the subscript ib in the above two equations. With one 
sample/chip, the desired signal at sample n is equal to the PN 
sequence, i.e., a(n) = p(n). The channel adds both noise and 
interference to the DSSS signal. At the receiver, the data at 
time n takes the form 

r(n) = s(n) + i(n) + u)(n)   • 

where j(n) is the jammer waveform whose power is given 
by «7?, and w(n) is the additive white noise, which is of zero 
mean and variance a7. The received signal r(n) is processed 
by an excision filter, and the result is correlated with p(n) to 
produce the decision variable for detection. 

The receiver SNR is defined as the square value of the 
mean divided by the variance of the correlator output The 
general expression of the receiver SNR using linear time- 
invariant interference excision filter of coefficients /»*, k = 
1, 2, - - •, N, is given in [6] and [16] as 

SNR0 = (1) 

L(l+a*)j>2-Lfc» + <T?. 
k=o 

where o* is the power of the jammer at the correlator output. 

A. Three Coefficient Excision Filter 

The simplest form of excision filter that can remove a 
sinusoid jammer is the three-coefficient causal excision filler 

H(z) = z-1 (z - oe-***) (1 - a*" V**) 

= 1 - 2or-1 cos u>o + a?z~2 (2) 

where the parameter o represents the amplitude of the filter 
zero, which is positioned at the jammer frequency wo. This 
parameter controls the depth of the filter notch, and its effect 
on the filter frequency response is depicted in Fig. 1(a). The 
filter impulse response comes directly from the definition of 
the Z transform 

h(n) = 6{n) - 2aS(n - 1) cos w0 + a?6(n - 2).     (3) 

If we denote the filter coefficients by ho = 1. &1 = 2a cos wo, 
h2 = a1, then the corresponding receiver SNR is a special 
case of (1) and is given by 

SNRo ~ L[(l + o*)(l + a" + 4o* cos' a/0) -!] + <£ 

The self-noise introduced by the filter H(z) is given by the 
first term in the denominator of (4), i.e., those terms dependent 
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(b) 

Fig. 1.   (a) Frequency responses of die three-coefficient adaptive notch fillets with IF = */3. (b) Zero diagram of the adaptive notch filter and the 
exact jammer frequency. 

solely on the amplitude of the filter zero 

a\ = L{a* + 4o2 cos2 u>0)- (5) 
The white noise sequence also becomes colored at the excision 
filter output, and its contribution to the receiver SNRo in (4) 
is given by the term 

= La2{l + a* + 4a2 :wo). (6) 
The quantity a\ = <r2 + <r2 represents the receiver noise in a 
jammer-free environment; therefore, we may refer to it as the 

jammer-free noise or the total self-noise (TSN). Improved 
SNRo can be achieved by reducing either or both components 
of the TSN. It is clear from (5) and (6) that for a given a, 
the minimum and maximum values of the total noise occur at 
wo = it/2 and u>o = 0, respectively, independent of a. On the 
other hand, the minimum value of the TSN occurs at a = 0 
and increases monotonically as a function of a, independent 
of a>o- fig- 1(b) shows the notch filter zero diagram for 
different values of a. For high jammer power, <r| S> a\., and 
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interference removal becomes more important than reducing 
the TSN to achieve any measurable improvement in the 
SNRo-' In this case, a high value of o should be chosen such 
that a deeper filter notch is introduced. We note that the 
jammer, is entirely removed in the extreme case of a = 1, 
which is the only case discussed in the original design [11]. 
On the other hand, as the jammer power decreases, the choice. 
of a should tend toward favoring the. reduction of the total 
self-noise over the jammer power and to ultimately shut off 
the filter for (a7 + <£) > <r2, disabling preprocessing of the 
received signal prior to despreading. To obtain the jammer 
power at the correlator output o*, it is prudent to first derive 
an expression of the jammer waveform jo(n) that escapes the 
excision filter when a # 1. Consider a narrowband sinusoidal 
jammer of the form j{n) = A sia(nu0 + v). wbere A b 

the jammer amplitude, and y> »s its phase. The jammer at 
. the filter output is given by the convolution 

j0(n) = A sm(nwo + <p) * \S(n) - 2aS{n - 1) cos wo 
+ a,6(n-2)] 

= A sin(nu>0 + v) - 2aA sin[(n - l)o>o +. ¥>] cos w0 

+ a2 A 6in[(n - 2)w0 + <l>] 

= A(l - a) sin(nu)0 + ¥>) + (<** ~ a)A 

■ sin[(n - 2)11)0 + <p] + aA sin(nw0 + <P) 

- 2aA sin[(n - l)u>0 + v] cos u>0 

+ aA sin[(n - 2)u<o + <p] 

= A(1 - a) sin(nwo + v) + (°2 ~ °)A 

• sin|(n - 2)w0 + vl- (7) 

The correlator output due to the jammer is 

Ui = Y, »(n)p(n). (8) 
n=l 

Accordingly 

^=E[t/?)-£;2ii/i] 

= £i2(«) 
n=l 
i 

= H ^ -.a)2{sin2(na'<' + f) 
n=l 

+ a2 sin2(nu>0 - 2u>o + v) - 2a sin(TW0 + v) 

■ sih(nu>o — 2w0 + v)} 
,          s~ L + La2 - 2La cos 2wo 

= A2(l - o)z ^  

+ Ä !(l-a)2Effl cos(2nw0 - 2u»0 + 2y>) 

cos 2{nu>o+tp)    a2 cos 2(TW0-2tJo+¥>)"!        »* 
2 2 .   .' J"    ■ 

For a reasonably high value ofL, the summation term in 
the above equation can be ignored. For example, for a chip 
sequence of length L = 128, and jammer frequency u>0 = */3 
and phase ip = */7, the summation term for a = 0.7 is 
0.013A2, which is much smaller than the first term 10.589.42. 
An exhaustive study over all ui0 and <p and o.has shown this 
example to be typical and the claim justified. Therefore 

cl « LA\\ - a)2 f \ + - - a cos 2u,„].       (10) 

Approximation (10) is used from this point forward. Substitut- 
ing (10) in (4), the receiver SNR becomes as in (11), shown 
at the bottom of the page. Equation (10) can be rewritten as 

ff? _ i![(i _ oj4 + 2a(l - o)2(l - cos 2a*)).      (12). 
it 

It is evident from the above equation that the jammer output 
power has a minimum zero value at o = 1 and monotonically 
increases for both increased and reduced values of a. The value 
of a2 increases faster for a > 1 than for a < 1, as illustrated 
in Fig. 2. This is because both factors (1 - a)* and (1 - a)2 

in (12) are invariant for a = 1 ± A. However, due to the 
appearance of a as a multiplicative factor in the second term, 
a2 will be greater for +A than for -A. Since the self-noise 
increases for increased value of o, as stated earlier, we can 
conclude from the above argument that the minimum value of 
the dominator in the SNR0 in (11) should occur for a in the 
range [0, I].1 Below, we prove this argument using the overall 
combined behaviors of the jammer power and self-noise. The 
denominator in (11) can be rewritten as a polynomial in a as 

/(a) = a« (l + c2 + Y) + a^~A2 ' A* cos *** 

+ a2(4 cos2 wo + 4a2 cos2 w0 + A2 + 2Ä2 cos 2w0) 

+ a{-A2 - A2 cos 2UD) + (°2 + \j' (13) 

To find the maximum SNRo, we simply differentiate /(c) with 
respect to a 

/'(a) = a3(4 + 4a2 + 2vl2) + o2(-3>l2 - ZA2 cos 2wo) 
+ o[8(l + a2) cos2 a* + 2 A2 + A A2 cos 2u>0] 

-(,42-M2cos2wo) (14) 
f'(a)=ba.3 + ca2 + da + e (15) 

and then obtain a, which sets /'(o) = 0. 
Since J'(0) < 0 Vi^o, except at a* = ir/2, and /'(l) = 

4+4<r2+8(l+<r2) cos2 u;0 > 0 for all values of u0, men f'(a) 
must have a real root in the range [0, 1], which represents the 

'Negative vihies of a change the filler nolch position md move H »wiy 
bom a and therefore should be avoided. 

SNRo = 
(1 + »a)(l + a* + 4a2 cos2 wo) - 1 + >12(1 - a)* [i + - - a cos 2u,0J 

(ID 
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The Teceiver SNR expression of the five-coefficient filter for 
a fixed frequency interference is derived in [6] and [16] as 

SNRo = 
L2h* 

(2 + ^)£^-2Ag 
*=-2 

(20) 

+ <r) 

»2 «.< M U 

Kg. 2.   Jammer output variance changing with a. 

optimal a. For the specific value of w0 = ir/2, /'(0) = 0, 
and /"(0) = -2A2 < 0. This means that /'(0.) < 0. With 
/'(l) > 0, /'(a) must then intersect the horizontal axis in the 
range [0, 1]. The same conclusion can be drawn for w0 = jr/2 
as for w0 ^ jr/2. 

The above argument implies that if (15) has one real root, 
then this root must be in the range [0, 1] and yields the 
minimum value of f(a), i.e., the maximum value of SNRn. 
We maintain that in the case that there are three real roots 
in (15), then one root must be negative since e < 0. This 
leaves two positive roots, and only one of them minimizes 
/(a) and lies in the range [0, 1]. In the Appendix, we present 
closed-form expressions of the three roots of given by (15). 

B. Five-Coefficient Filler 

The z transform of the five-coefficient filler with the adap- 
tive coefficient a can be expressed as 

H{z) = (z - oe->"-)(l - oz-V"-)(a2 - e-*"-) 

- (a - z-Vw") (16) 

= a2(z2 + z-2) - 2o cos w0(l + a2)(z + z-1) 

+ 1 + a4 + 4a2 cos2 wo. (17) 

To normalize the center coefficient to one, H(z) is rescaled as 

„2 

The jammer waveform escaping the five-coefficient filter as a 
function of A, wo, and a is 

j'o(n) =^sin(TUi>o+v>) * {M(n)+Ai($(n-l)+$(n+l)J 
+h2[6(n^2)+8(n+2)]} 

= ^sin(nw0+v>)(Ao+2hi cosw0+2A2cos2w0). 

(21) 

Therefore, the jammer variance is given by the approximation 

n=l 
LA2 

« -y- (*o + 2Äi cos wo + 2A2 cos 2w0)
2     (22) 

where a similar argument to that for (10) holds true here as 
well. Substituting (22) in the SNR expression (20) gives 

^'Mi (23) 

where 

D(a) = (2 + o2) {2h2 + 2ft2 + ft2) - 2ft2 

A2 

+ -j- C*o + 2hi cos u>o + 2ft2 cos 2w0)
2. 

Since fto = 1, maximizing SNRo requires the minimization of 
the denominator D(a). The optimum a is then a root of the 
polynomial If (a) = 0. 

(2 + <r2)(4ft2ft'2 + 4Älfti) + A2{2h'2 cos 2w0 + 2/»'j cos w0) 
• (1 + 2hj cos o»o + 2h2 cos 2w0) = 0 (24) 

where ftj and h'2 are the derivatives of fti and ft2, respectively. 
It is clear from (19) that the impulse response remains invariant 
when a is replaced by its reciprocal value 1/a. Accordingly, 
SNR0(a) = SNR0(l/a), which implies that we only need 
to find the optimum a in the range 10, 1J. Define the new 
variable x such that 

Hi(z) = - -(z2 + z-2) 
1 + a* + 4a2 cos2 wo 

2a cos ci>o(l + a2)   , ,» 
- . .    «      °2      2      (z + z-*) + l.    (18) 1 + a* + 4a2 cos2 w0 

v 

"The five filter coefficients are then given by 

,     _  -2o(l + a2) cos w0 

■<"'       _1 ~ 1 + a* + 4o2 cos2 w0 (19) 

x = a+ ■ (25) 

A      . 21  
(   2    "-2~l + a4 + 4a2cos2wo" 

The coefficients Aj and h2 in (19) can then be expressed in 
terms of the new variable x as 

' ,        .            (-2 cos w0)ar 
Al = ft_i = -^ -— 

x2 + 2 cos 2w0 
j^ (*) 

A2 
= A_2 = 

** + 2 cos 2w0 

and (24) becomes 

D,(x) = C4X4 + c3x
3 + c2x

2 + c1x + co (27) 
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where 

c* = A2 cos2 wo 

c3 = - (8 cos2 w0 + 4a2 cos2 w0 + A2 cos 2wo 

+ 4A2 COS4 wo) 

C2 = 6^42 COS2 WO COS 2WO 

c\ = 16 cos2 wo cos 2WO — 4 + 8a2 cos2 wo cos 2wo 

- 2<T2 + 8^2 cos4 w0 cos 2w0 - 4A2 cos2 2w0 

Co = - 8J42 cos2 w0 cos2 2wo. (28) 

The above equation should be first solved to find the real root 
x in [2, oo]. Numerical methods could be used for this task. 
This solution is then used via (25) to provide the optimal value 
of the coefficient o. In the following development, we clearly 
show that there is a unique optimum value of a in the range 
[0, 1] that yields the maximum SNRo- We begin by making 
two important observations. 

1) Using trigonometric equalities, it can be easily shown 
from (27) that D'{-2) > 0 and Z>'(2) < 0, independent 
of wo, A, and a2. For A / 0 and w0 / 7r/2, the leading 
term of polynomial (27) is positive, i.e., D'(±oo) > 0. 
Therefore, since i7(2) < 0 and D(oo) > 0, then a real 
root x in [2, oo] is guaranteed when a jammer is present. 
For A ^ 0 and w0 = (*/2), 

D'(x) = xA2(a 
4 + 2a2 + 4A2^ 

A2 (29a) 

which shows that x still has a positive root that is greater 
than or equal to 2. 

2) In a jammer-free environment, A = 0, and 

Z>'(x) = C313 + cjx = C3i(ar2 + cj/c3) (29b) 

where |(cj/c3)| < 4. That is, there is no real root in 
the range [2, 00]. In this case, it is clear from (23) that 
the lowest possible value of D(a) is reached at a = 0. 
This result is expected as it implies that the maximum 
receiver SNR is achieved by disabling preprocessing and 
shutting off the excision filter when the jammer is absent. 
"We note that in both parts of (29), the root x = 0 is 
discarded, as it yields an imaginary value of a. 

Let ii, £2, *3, and x4 represent the roots of (27). From 
the values of co and c4, the product of these roots is negative 
and given by 

X] £2X3X4 ^ ~~8- (29c) 

Due to the respective values of ^(x) at x = —00, —2, 2, 
00, one of the above roots (xj) is always in the range [2, 00], 
whereas another root (X2) must be in the range [—00, —2]. 
Further, the two remaining roots (X3 and 14), if real and 
positive, must both be either in the range [2, 00] or in the 
range [0, 2]. If both roots are in the range [2, 00], then x\, 
x3, and x4 > 2, which implies -1 < x4 < 0 to satisfy (29c). 
However, these values contradict the fact that according to 

(27), the multiplication of the roots pairwise must be equal to 
or less than 6, i.e., 

X!(x2 + X4) + x3(xi + x4) + x2(x3 + x4) < 6.      (29d) 

The only case that the above equality holds'is when A and a2 

are such that xi = 12 = 13 =' 2 and X4 = —1 at wo = 0. This 
is impossible since in this case, the sum of the above roots 
is 5, which is inconsistent with the value — C3/C0 at wo = 0, 
given by (28). 

DI.  NONSTATIONARY INTERFERENCE EXCISION 

To develop the optimum receiver, based on both the power 
and IF of the nonstationary interference, we assume that the 
jammer is stationary over the filter extent It is then quite 
straightforward, as shown below, to prove that the optimum, 
receiver performance is achieved by optimizing the parameter 
a at each data sample. 

Contrary to the analysis in Section II, the three-coefficient 
excision filter impulse response in this case is time dependent 
and is given by 

h(n, m) = S(m) + /ii(n)«(m - 1) + h2(n)6(m - 2)   (30) 

where 

( ht (n\ = —2/1- rns *.j_ 
(31) 

hi (n) = — 2an cos wn 

h2(n) = a2
n. 

If the interference IF is assumed constant over the filter extent, 
then An = J4„+I = An+2, and wn = w„_j = wn+i. 
Using the three components of the received signal discussed 
in Section II, the filter output at time n is given by 

j/(n) =p(n) + Mn)p(n - 1) + h2{n)p(n - 2) 
+ Jo(n) + w„(n) (32) 

where 

Jo(n) = j(n) + hj (n)j(n - 1) + h2(n)j(n - 2) 

w0(n) = w(n) + hi(n)w(n - 1) + h2(n)w(n - 2). 

The decision variable U at the correlator output is 

u = J2 y{n)P(n). 

It is easy to show that 

E\U\=L 

(33) 

(34) 

and 

E\U2) =L2 + Y, (h2(n) + /if.(n) + a2 + a2h\(n) 

+ a2h2(n) + j2
0{n)). (35) 
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- Thus, the correlator SNR is 

E2[V] . 
SNR3 = 

E[U2] - E*[U] 
= L*/D3 (36) 

where. 

Similar to (9) 

Ejo2(n)=E^(l-<»n)2 

n=l 

l+q„ — ttn COS 2o>n 

2 +x:^(i-on)2. 
n=l 

•   o„ cos(2nwn - 2wn"+ 2<?) 

cos 2(nwn + tp) 
2 

a2, cos 2(nwn 

2 
+ 2ü>n + y.)! 

(38) 

The subscript n is now attached to a to indicate its dependence 
on time. The second summation term in (38) can be ignored 
in most cases, as in (9). Then, (37) can then be rewritten as 

D3 = £ (1 + a2) (1 + a« + 4a* cos2 «*,) - J 
n=l 

+ >l2(l-on)
2[i + ^-0ncos2u,n].        (39) 

Since £>3 is a sum of positive terms, its minimum value 
is obtained by minimizing each term in the summation (39) 
separately. It is easily recognized that each term in (39) 
has the same form as the denominator in (11). As such, 

. providing that the approximation of (38) by (39) is valid, the 
optimum coefficient on can be obtained by using (14) at each 
time sample in a nonstationary jamming scenario. A similar 
argument can be supplied for the case of the five-coefficient 
excision. 

IV. PERFORMANCE IMPROVEMENT 

First, a fixed frequency jammer excised by a three- 
coefficient filter is considered. The optimal value of a is 
computed from (A6) and substituted back into the receiver 
SNR expression to provide the maximum SNR for a given 
jammer power and frequency. Figs. 3 and 4 compare the 
correlator SNR's using the original excision filter (full 
excision), no excision filter, and the optimum excision filter. It 
is evident that for low jammer-to-signal ratio, shutting off the 
excision filter leads to a higher receiver SNR than processing 
the data with the original excision filter, which is insensitive 
to the jammer power and only depends on the IF information. 
This situation is reversed for a high JSR where the original 

■P» = E fci(B)+ %{") + «* + °7ti{n) + <r2f4(n)+Jl(n).' f' 

(37)    §,0 
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Fig. 3.   IF = w/2.1, 0 dB white noise, JN length = 128. Correlator SNR 
with three coefficient fihen and filter off. 
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Fig. 4.    TF = »/LI, 0 dB white noise, PN length = 128. Correlator SNR 
wiih three coefficient fillers and filter off. 

filter, which fuDy excises the jammer, outperforms the case 
when preprocessing is disabled. As is evident from Figs. 3 
and 4, the performance of the proposed optimum interference 
excision filter asymptotically reaches the desired performance 
of both the "IP-based excision** and "no excision" for high 
and low jammer power, respectively. In between these two 
extreme cases, the proposed excision filter, which is based on 
both the amplitude and frequency of the jammer, gives clear 
improvement over the other two techniques. 

In Figs. 5-7, we compare the receiver performance versus 
the interference IF. The optimum excision filtering curve 
depicting the change in receiver SNR versus frequency is 
not only above the other curves, correspondingly to the two 
alternative aforementioned techniques, but it also becomes 
much flatter than the receiver SNR curve of the original filter. 
This means that one attractive by-product of the proposed 
approach is making the receiver SNR less dependent on the 
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Hg. 6.   JSR = 10 dB, 0 dB white noise, PN length = 128. Correlator SNR     fo[ 1ime coefficien, fiI,er. 0 dB white noise, PN length = 128. 
wilh three coefficient fillers and filler off versus jammer IF. 

jammer IF. The three-dimensional (3-D) plot in Fig. 8 shows 
the combined effect of the jammer power and frequency on the 
derived optimum coefficient a. It is clear that a changes from 
0 to 1 and becomes less dependent on for higher values of A. 

Figs. 9-14 carry the same comparison as Figs. 3-8, but 
for the five-coefficient adaptive notch filter case. Similar 
performance can be easily observed. In general, the five- 
coefficient excision filter gives better overall SNR performance 
than the three-coefficient filter, as discussed in [11]. 

Figs. 15 and 16 show the computer simulation results of 
the bit error curve using three- and five-coefficient filters, 
respectively. For the three-coefficient filters, a chirp jammer 
whose frequency changes from 0 to w in every bit duration and 
a white noise sequence with 0 dB relative» to the signal are both 
added to the PN sequence of length L = 64. One million bits 
are tested at every 2-dB JSR increment from -10 to 10 dB. 

Consistent with the result of the receiver SNR analysis, for low 
jammer-to-signal ratio, applying no filtering leads to lower bit 
error rate than processing the data with the original excision 
filter, whereas for a high jammer power, the original filter has 

- lower errors than the case when preprocessing is disabled. The 
optimum excision filter outperforms both cases above. It gives 
a BER of 10-5 at 10 dB JSR and smaller rates at lower JSR. 

For the five coefficient filters, a frequency random hopping 
jammer is used for the same signal and noise environment 
as in the previous case. The random hops are uniformly 
distributed in [0, IT] with one hop per bit. Because of the good 
performance of the five-coefficient filter, the PN sequence 
length is reduced to 32 to yield some reasonable bit errors 
in one million iterations. The bit error curve of the adaptive 
coefficient does not significantly outperform the original filter 
case at high JSR, as illustrated in'Fig. 16. This is primarily due 
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to the slight difference in the receiver SNR using Ihe original 
and modified excision filters at high JSR for the five-coefficient 
filter, as shown in Fig. 12. 

V. CONCLUSIONS 

An optimum open-loop adaptive notch filtering approach for 
interference excision in PN spread spectrum communications 
has been developed. The FIR filter with variable depth notch 
that partially removes the jammer achieves significantly higher 
receiver SNR over both extreme cases of full jammer excision 
and no excision. The optimum performance is reached by 
trading off the jammer power and the filter self-noise. The filter 
notch is controlled by a new variable whose optimum value is 
a function of the jammer power, the jammer IF, and the white 
noise power. For the three-coefficient interference excision 
filter, the expression for the optimum a can be obtained by 

solving for a root of a third-order polynomial under both fixed 
frequency and randomly changing IF jammer. On the other 
hand, we should seek numerical solution in the case of the five- 
coefficient filter, due to the difficulty in getting the solution in 
a closed form. 

Several examples have been presented that show the im- 
provement in the receiver signal-to-noise ratio achieved by 
using.the optimum excision filter over both cases of prepro- 
cessing disabled and preprocessing enabled, but only based 
on the IF information. This improvement is exhibited over 
a wide range of JSR and is shown using exact values of 
the interference amplitude and IF. As in the case of IF- 
based interference excision [11], [16], the noise and the kernel 
will both affect the estimation of these two parameters when 
applying TFD's to the underlying problem and will yield 
a lower performance than when using exact values. The 
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Wigner-Hough transform recently proposed for interference 
excision in the PN spread-spectrum communication problem 
[19] can be applied for an improved IF estimate in low jammer 
power scenarios. 

32. 

Let x define a new variable such that 

c 
(A3) 

APPENDIX Substituting (A3) in (Al) yields 
To solve for a, we use the polynomial /'(a) = 0 in (15) 

ba3 + ca? + da + e = 0 (Al) 

where 

( b = 4 + Aa2 + 2A2 

c = -3A2 - 3A2 cos 2w0 

d = 8(1 + a2) cos2 wo + ?A2 + AA2 cos %o0 

e = | = -(A2 + A2 cos 2u>0). 

where 

(A2) 

x3+px + q = 0 

P- 
3M-C2 

302 

e__cd_      2c?_ 
b     3D2 + 276s' 

(A4) 

(A5) 
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The closed-form expression of the roots of the simplified 
polynomial (A4) are given in [20] 

■>'fbWW 
+ 

x2 = 

(A6) 

+ 7' 

X3 

where 7 = (-1 + tV5)/2, and -y2 = 7* = (-1 - tV3)/2. 
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Performance Analysis of Instantaneous 
Frequency-Based Interference Excision Techniques 

in Spread Spectrum Communications 
Chenshu Wang and Moencss G. Amin, Senior Member, IEEE 

Abstract—Jammm characterized by their instantaneous fre- 
quencies can be effectively mitigated in direct sequence spread 
spectrum communications by using open-loop adaptive excision 
filters. The primary requirement for these fillers is that they 
must possess a notch in tune with the jammer instantaneous 
frequency (IF) to annihilate the interference power at every time 
sample. The interference time-varying frequency can be obtained 
using existing IF estimators, including quadratic time-frequency 
distribution methods. Without focusing on any specific estimator, 
we develop expressions for the receiver performance using a 
general class of multiple-zero FIR excision filters and show the 
dependence oT the bit error rate (BER) on the filter order 
and its group delay. The effect of inaccuracies in the jammer 
instantaneous frequency information on the receiver performance 
Is considered and evaluated as a function of the filter notch 
bandwidth. The latter is defined by the filter zero multiplicity, 
which is shown to be an important factor in the analysis or the 
correlator signal-to-noise ratio (SNR). 

1. INTRODUCTION 

A GREAT DEAL of research has been carried out for 
estimating the instantaneous frequency (IF) of signals 

encountered in physics, communications, radar, sonar, and 
acoustics. A variety of different approaches have been exam- 
ined, ranging from closed-loop adaptive filtering [1], extended 
Kaiman filters (2], and hidden Markov models [3] to time- 
varying spectral analysis such as the quadratic time-frequency 
distributions fTFD's) of Cohen's class [4], the affine class [5], 
and the hyperbolic class [5]. Some of the IF estimation meth- 
ods are only applicable to monocomponent signals [6]-[8], 
whereas others cannot be used for a rapidly time-varying 
environment [1]. In addition, IF estimators may be encumbered 
by high computational requirements [3] and may also require 
a model that is signal specific [2]. In general, computationally 
efficient IF estimators should be sought out for real-time data 
processing applications involving on-line signal enhancement 
and jammer suppression [9]-U2]. 

The instantaneous frequency information of a nonstationary 
interference has recently been used in direct sequence spread 
spectrum (DSSS) communication to mitigate a large class of 
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polynomial phase jammers using time-frequency distributions 
[13], [14]. These jammers are characterized by their instan- 
taneous frequency and can be easily removed by applying a 
time-varying excision filter to the data at the receiver. The 
basic requirement of this filter is that it must have a notch 
in tune with the interference IF in order to annihilate the 
undesired interference power at every time sample and as 
such improve the interference immunity of the DSSS receiver. 
This requirement is satisfied by integrating or copying the IF 
estimate of the jammer into the coefficients of the excision 
filter to form a proper notch. This excision method can be 
categorized as an open-loop adaptive filtering, where the filter 
coefficients are adjusted using the interference IF estimated 
in the time-frequency plane [13], [14]. We maintain that the 
instantaneous frequency-based interference excision approach 
is not confined to time-frequency signal representations but 
can be adopted using other IF estimators, including those 
cited above. The IF-based approach represents a promising 
alternative to the two primary schemes commonly used for 
interference rejection, namely, the linear prediction filtering 
[15] and the transform domain excision [16]-[19]. The high 
nonstationary property of the interference along with the 
difficulty to confine it in one or few transform bins make these 
schemes less attractive for some classes of jammer signals, 
especially those of polynomial phase characteristics. 

The general formulation of the open-loop adaptive filtering 
interference excision problem, which was introduced in [13] 
and detailed in [20], assumes exact knowledge of the jammer 
instantaneous frequency, which is not always the case. Inac- 
curacies in the IF information may vary from one estimator to 
another but generally increase with increased noise power level 
or decreased jammer to signal (JSR) ratio. A bias in the IF may 
also be the result of poor frequency resolution generated by 
processing short data records or using an insufficient number of 
Fourier transform bins [10]. This bias leads to a displacement 
of the filter notch away from its proper position at the exact 
interference IF and will, subsequently, allow some of the 
jammer power to escape through the filter to the correlator, 
causing significant change in the probability of errors. In 
this paper, without focusing on any specific IF estimator, we 
examine the effects of the IF estimation error on the spread 
spectrum receiver performance. This error is assumed to be 
a zero-mean white noise process that is independent of the 
pseudonoise (PN) sequence and the interference frequency. 
We derive expressions of the correlator output signal-to-noise 

1053-587X798$ 10.00 © 1998 IEEE 
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ratio (SNR«) as a function of the IF error variance. The SNR* 
is a performance measure that is commonly chosen as an 
appropriate figure of merit of a DSSS receiver incorporating 
an interference exciser [15). 

We broaden the scope of the IF-based interference excision 
methods by considering a wider class of excision filters than 
those presented in [14] and [20], where only three- and 
five-coefficient filters are employed. The task is to quantify 
the receiver performance as a function of the excision filter 
characteristics. Specifically, we consider the effect of both the 
phase and order of the multiple-zero excision filter on the 
correlator SNR. 

In Section II, we derive the general expression for the 
correlator SNR under a time-varying preprocessing excision 
filter. Section III presents the framework of open-loop adaptive 
interference excisions using multiple-zero FIR excision filters. 
Analysis of the receiver SNR under>even and odd values of the 
filter zero multiplicity is provided. In Section IV, we focus on 
the special cases of fixed and randomly changing instantaneous 
frequencies. Section V deals with the effect of the instanta- 
neous frequency estimation errors on the receiver performance. 
Computer simulations are presented in Section VI. 

impulse response can be written as 
K 

h(n, m) = J2 h/,nS{m -f-l) (4) 
/=o 

where 8(n) is the Kronecker delta function. Assuming a 
transmission of a single bit "1," we drop the subscript Jfc in 
(I) and (2) and take s(n) as p(n). Processing r(n) with the 
excision filter h(n, m) and correlating the result with the PN 
sequence p(n) yields 

fi = £    £   /«(n,m)p(n-m)p(n) (5) 

II. CORRELATOR SNR FOR 

TIME-VARYING EXCISION FILTERING 

Since the proposed instantaneous frequency-based 
interference-mitigation technique requires the application 
of a filler with variable coefficients, it is important to derive 
the correlator SNR using linear time-varying excision filters. 

The DSSS signal is given by 

MO = Y piMii* - nrc) (i) 
n=l 

where p*(n) represents the output sequence from the PN code 
generator for the Arth information bil bk (t), and L is the PN 
sequence length. The chip pulse q(t) is of duration re and unit 
energy. The transmitted signal may be expressed as 

*(o=E7***(«-«i) (2) 

where Jfc represents the binary information sequence, and 
7i = Lrc is the bit interval (reciprocal of the bit rate). The PN 
sequence pk(n) Vn, k is known to both the transmitter and 
the receiver. The channel adds both noise and interference to 
the DSSS signal. At the receiver; the data sample at time t 
takes the form 

r(t) = s(t)+j(t) + w(t) (3) 

where j(t) is the jammer waveform, and iv(t) is the additive 
white noise, which is of zero mean and variance o1. We 
assume that the PN sequence is identically distributed random 
variables such that p(n) =1-1 with equal probability. 

Consider a time-varying filter of length K + 1 with coef- 
ficient Ao,n, n1>fl, •--, njf>n and induced delay /. The filter 

which represents the correlator output due to the signal. 
Substituting (4) in (5), we obtain 

I    K 
ffisEE hf."*n -f- OK*)-      (6) 

The correlator outputs due to the additive noise U2 and the 
jammer U3, respectively, take the form 

L    K 

^ = EE A/.»u'(n - / - Qp<»)      (7) 
n=l f=0 

L     K 
y3 = EE */.«#» " / " ')PM- (8) 

n=l /=0 

The overall correlator output y represents the decision 
variable y = Ux + f/2 + U3. The receiver makes the decision 
as to whether "1" or "-1" was transmitted depending on 
the value y. Due to the zero-mean property of p(n) and 
the independence between p(n), j(n). and w(n), ElUj] = 
E[U3) = ElUM) = E\U2U3] = 0, where E\.\ is the 
expectation operator. On the other hand, the correlator mean 
value due to the signal is nonzero and is given by 

L      K 

m, = E\Vi] = J2J2 Elh/.n)E\p{n -f- l)p(n)].   (9) 

In the above equation, we make use of the assumption 
that the jammer and, subsequently, the filter coefficients, is 
uncorrelated of the PN values. Due to the whiteness property 
of the PN sequence, the term E\p{n - / - l)p(n)J is zero 
unless / = -/. As such, the induced delay / only in the 
range 0 < / < K should be considered. In this case, the mean 
value of correlator output becomes 

L 

m, = Y, E\h.,,n). (10) 
n=l 

The correlator SNR is defined as the square value of the 
output mean divided by the output variance [20]. Therefore, 
if y is the output, the correlator SNR is given by 

SNR. =4 

£|t/?J - £?[t/,] + E[Uft + E[Ui) + 2E{UlU3y 
(H) 
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The contribution of U\ to the denominator of the SNR., ex- 
pression is referred to as the self-noise term, which reflects the 
effect of the excision filter on the PN uncorrelation property. 
The corresponding mean square value can be obtained from 

(6) as 

E\V?)=E\££f;£hf,nh„k 
n-l k=lj=0 9=0 

■p{n-f-l)p{n)p{k-g-l)p{k) .    (12) 

The terms in (12) take zero value except under one of the 
following exclusive sets of conditions: 

Condition 1: 

i 
Fig. I.   Zero-diagram of proposed fillets. 

n_/_/=n 

k-g-l=k 
n?k 

.// = * = -' 
n?k 

Condition 2: 

(n-f-l = k-g-l f/ = 
\ n = * \n = 

= 5 
k 

Condition 3: 

{ k-g-l=n ■{• n#fc 

(13) 

(14) 

(15) 

given by 

V<=E\V*] = E 
n=l t=l /=0 »=0 

Under the first set of conditions, the mean square value in 
(12) is equal to 

v' = E E E\h.t,nh^,k\ - Y £[fc-«.-)-    (,6) 

n=l k=l "=:1 

For the second set of conditions, (12) can be simplified to 

v2 = jr-£E[hU' (,7) 

n=l /=0 

Under the third set of conditions, we have n - k = / +1 = 
-g-ljto. The nonzero terms under condition 3 allow E\UX ] 
to be rewritten as 

L m\n\k,-2t\ 

n=l/=max[0,-*-2f] 
I 0 / = -' 

(18) 

•PW;(1-J-')#) 

= E E E ^i&/.-fc».«j(n -f-/)j(n ~s"/)]- 
n=l /=0 »=0 

(20) 

The cross-correlation term in the correlator SNR expression 

wu>)=E Y, E E E */.»*..»*• - '- o 
n=l  t=l  /=0 9=0 

J>(n)i(* - g - l)p{k) = 0 (21) 

which is due to the fact that E\p(n)p(k)p{l)] = 0, Vn, k, I. 
From (10M21) 

SNR„ = 
mi 

—77"        (22) 

V,= < 

where the upper and lower bounds on / are due to the limits 
0 < / < K and 0 < -f-2l < K. It can be readily shown that 
for the noise component in the received data, the only nonzero 
terms in the mean square value at the correlator output U2 is 
generated undeT (2). Therefore 

V, + V2(l + <T*) + V3 - m\ + V4 

where mw, K,, V2, V3, and V« are given by (11), (16H18). 
and (20), respectively. If the filter is time invariant, with no 
induced delay, and assuming that the jammer is of zero mean, 
then (22) becomes identical to the correlator SNR expression, 
using a linear predictor exciser, which is given by [15, Eq. 

(31)]. 
The improvement in the receiver performance using a 

filter exciser can be quantified by comparing the correlator 
SNR with and without applying the preprocessing excision 
techniques. It can be readily shown that the ratio of these two 
SNR's is given by 

E[Ui] = o2V2 (19) 

where V2 is given by (17). The mean square value of the 
correlator output due to the jammer is denoted as V« and 

V = (V, + V2(l + (7*) + V3 - m\ + Vt\W 
(23) 
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Fig. 2.    Muliizero fiher response of different order IF = 0.33 (normalized frequency). 

In general, two constraints often exist on the construction of 
nonstationary interference open-loop or closed-loop adaptive 
excision filters. A filter with short impulse response must 
be used. Long extent filters are likely to span segments of 
changing frequency content and, as such, allow some of the 
jammer components to escape to the filter output. This can 
lead to large bit error rates (BER's) for high jammer-to- 
signal ratios (JSR's). The filter frequency response should, 
on the other hand, be close to an ideal notch filter to be 
able to null the interference with minimum possible distortion 
of the signal. This property, however, requires filters with 
infinite or relatively long impulse responses. These conflicting 
constraints represent, in essence, a tradeoff between temporal 
and spectral resolutions, which is commonly encountered in 
time-frequency signal analysis and estimation. 

It is shown in [13] and [20] that short multiple-zero excision 
filters, which are formed based on the IF estimates in the 
time-frequency plane, effectively improve the overall receiver 
performance for a large class of nonstationary interference 
known as polynomial phase signals. 

In the following sections, we consider multiple-zero filters 
with both short and long extents. Excision filters of long im- 
pulse responses are used to produce a wide notch, rather than 
a narrow one. This is achieved by increasing the multiplicity 
of the filter zero corresponding to the IF (see Fig. 1). With 
a higher multiplicity, the filter becomes longer in length as 
well as broader in notch bandwidth (see Fig. 2). Therefore, 
high notch multiplicity excision filters are most effective in 
situations where the jammer has an instantaneous bandwidth, 
i.e., its energy is spread around the instantaneous frequency 
[21J. In this case, broader instantaneous bandwidth necessitates 

. the use of a wider notch. In addition, wide-notch filters become 
important in offsetting the effect of inaccuracies in the IF 
estimates, as discussed in the introduction. 

III. GENERAL MULTTZERO EXCISION FILTERS 

If j(t) is a polynomial phase jammer that is fully charac- 
terized by its instantaneous frequency wn, then interference 
excision can be effectively performed by processing the data 
r(i) at the receiver by a linear filter with a notch synchronous 
with o>„. In dealing with real signals, we focus on nonstation- 
ary jammers in the form 

where 
A   sinusoidal amplitude; 
h/„  instantaneous frequency; 
ip    phase. 

The  z-domain   transform  function  of  the  corresponding 
multiple-zero notch filter of order 2d is given by 

H{n, z) = (z- e-'u" )J{1 - z- V'w") V 

= (z~l - 2 cos u>„ + z)*«-1 (25) 

where / now represents the filter group delay. It is well known 
that the nth-order polynomial can be expanded as 

(a + 6+c+-+/)" 

=    T,     £   , ,n!  .*v-r 
0 < p < d, 0 < q < d,- ■ ■, 0 < s < d; 

p + q + --+s = n. (26) 

From (25) and (26) 

cf! 

0<r<d,0<v<d,0<q<d.   (27) 

The corresponding impulse response of H(n, z) is 

d< 

h(n, m) =     Yl      5Z (-2 cos ->nyS[n-r+v-l). (28) 
9+r+v=d f!r!v! 

If we let r — v = f, then the above impulse response can be 
written in terms of the time-varying filter coefficients as 

d 

h{n,m)= Y, hf,„6(n-f-l) (29) 

j(n) = A sin(u)„n + ip) (24) 

where 

A/,n -1-/.- -     £,      («f _ 2r + /)!r!(r - /)! 

0<r<d,0<f <d (30) 

and the bounds on r are due to the conditions Q < v = r—f < 
d and 0 < q = d — 2r + f<d. The operator [.J represents 
the floor integer. 
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Fig. 3.   Filler coefficient A|.„ changing with f versus IFu.', "+-." d = 6: "x-~ A = 5: ~o-~ i = 4: "+-." rf = 3: ~x-~ rf = 2. 

We assume that the jammer is stationary over the filter 
extent. This means u>„ = w„±k, 1 < k < d, and subsequently, 
«/_„ = /t/,„±m with 0 < m < rf. For this assumption to 
hold, rapidly time-varying jammers should be processed by 
short excision filters. With the filter notch placed at the IF, 
the jammer is totally removed, and the correlator output is 
only due to the DSSS signal and additive noise. Because of 
the symmetry of the filter coefficients, we focus on the range 
0 < I < d. By changing the sign of / and the range of / 
in the appropriate terms in the general expression (22), the 
correlator SNR becomes 

SNR«, = V, + V2(l + o*) + V3 - ml 
where 

™v = E .£'I'"."1 

(31) 

(32) 

V> = E E ^IV-Ai.*) - E E\hU       <33> 
n=I *=1 

v> = Y,Z m,) 
n=lf=-d 

* = £ 
d 

E 
1  /=-J+2f 

E[h/iTlh-f+2i,n] 

(34) 

(35) 

where h/.„ is given by (30), and where the bound conditions 
off in (35) are due to -d < / < d and -d < -f + 21 < d. 

In order to generate small probability of errors, m, should 
be of high magnitude. Since we assume that "1" is transmitted, 
the output mean value should be positive and, from (32), is 
maximized if al! terms in the summation take positive values, 
independent of u;n. From (30), this requirement is satisfied if 
the group delay / is even for even values of d and odd for 

odd values of d. With this condition satisfied, my becomes 
the sum of positive terms. Since the high-order multiplicity 
filter coefficients result from the convolution of the impulse 
responses of the lower order multiplicity filters, the values 
of the filter coefficients decrease as we move away from 
the center. Therefore, my, which is related to only one filler 
coefficient according to (32), increases in absolute value for 
decreased values of I. Fig. 3 shows the plots of /»;.„ over u>„ 
for different I and d. For ihe same multiplicity rf, the filler 
coefficient h/,n significantly increases for smaller /. 

For a deterministic, rather lhan a stochastic, type of jammer, 
we drop ihe expected value in (32)-(35). In this case 

L 

V, -EA?.. (36) 

In (31), Vj — m? is insignificant compared wiih V2. We note, 
that V2 in (34) is constant and independent of / (0 < / < rf). 
Although V3 is a monotone decreasing function of /, its value 
is always smaller than V?. Fig. 4 compares the values of the 
inner summations of Vj and V3 over ii;n. For Ihe variable 
V3, Ihe maximum value is considered, i.e., / = 0 for even 
d and / = 1 for odd rf. The summation values in V? are 
almost twice those of V3. Therefore, the denominator in (31) 
is less sensitive to the changes in 1 than the numerator m?. 
Accordingly, the correlator SNR reaches its maximum value 
when m* is maximum, which occurs at f = 0 for even rf and 
/ = 1 for odd rf. Under these conditions, the correlator SNR 
can be detailed as shown in (37), shown at the bottom of the 
next page, where is still given by (30). 

rv. SPECIAL CASES OF JAMMING 

Two cases of the instantaneous frequency are now consid- 
ered: a) IF is fixed, independent of time, and b) the normalized 
IF in radians is a random variable uniformly distributed over 
[0, irj. These two cases of fixed and randomly changing 
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instantaneous frequency (normalized) 

Ffc 4.   .„r*r summon vaIlK of V, awJ V3 versus ,F.,. **, ft« £-._„ „>.„. Dashed line: j^^ ^ ^ 

IZoe„n?„,rePreSen, ,hC ,W° eX,remC "SeS °f '^^    Wh- " - «- «efflde«, given by 
l(rf+/)/2J 

A fure-</ /f 

For a fixed frequency jammer, u,„ = u0. The correlator 
SNR in (37) becomes 

'=*-/=  E 
r=/ 

rf!(-2 cos tt>0)
rf-2'-+/ 

(rf-2r + /)!r!(r-/).< 

SNR„« 

I /iJU 

(2 + ^53A*-2A2 

 h\L 

/=-rf+2 

0<r<rf, 0<f<d. (39) 

Fig. 5 depicts the correlator SNR versus the interference 
fixed frequency «0 for a 0-dB signal. The solid line curves 

d is even      corTCSP°nd lo Iheoretical result using (38), whereas the dashed 
line curves represent the experimental values using the general 
expression (11) of the SNR„. The mean and variance of all 
terms in (11) were computed over 100000 runs. There is 

d is odd       a clear agreement between the theoretical and the simulated 
results, which validates the above derivation. In Fig. 5, the 
delay / was set equal to zero and one for even and odd values of 
d, respectively, to maximize the SNR, as argued in Section III. 

(38)    The correlator SNR is not constant and reaches a maximum 

f (X>lVn]J 

SNR0 

L     L / L T2 "T — ■  

I \n-l / n=l f=—J 

even d 

(37) 

-E*WJ+E E ^/.nA-/-2,„]] 
"=I n=I  f-_J_i_-> I "=I /=-rf+2 

1*1 

oddrf 
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Fig. 5.   Correlator SNR for different zero multiplicity (I = 128, o1 = 1). 
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instantaneous frequency (normalized) 

0.4 0.45       0.5 

Fig. 6.    Correlator SNR for different group delay I. 

at w0 = */2. This fact is emphasized in Fig. 6, which shows B. Randomly Changing IF 
the dependence of SNR„ on / for two different values of d Jf Wn js a random variable uniformly distributed over [0,*r], 
with L = 128, a1 =  1. Incn 

It is important to note that the correlator SNR expressions j    /■»                               (2m-1)!! 
for the three- and five-coefficient excision filters in [14], [20]. E[(cos wn)    ] = - ^  (cosw")     **• ~     {2m)» 
with the coefficients [1 -2 cos w0 1) and [1 -4 cos w0 2 + ^ (2m- l)(2m-3)(2m-5)--3-1 
4 cos2 wo -4 cos wo 1], respectively, are special cases of -    (2m)(2m - 2)(2m - 4) • • • 4 • 2      {   ' 
(38). By setting d =   1 and d =  2, the correspondingly 0 =£I(cos w„)2m+>]-                               (43) 
correlator SNR is given by (40) and (41), shown at the bottom n           " 
of the next page. Bv substituting (42) and (43) into (37), we have (44)-(46), 
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TABLE I 
CORRELATOR SNR OF DIFFERENT ZERO 

Muinnjcmr AT DIFFERENT / (L = 128, a2 = 1) 

SNR(dB) H> 1-1 M K3 M US 1-6 

4.2 15.4790 2J59S 

dO 11.4)21 -7.9534 

4-4 12.1661 5.2940 -U.8397 

4.S 9.7361 -2.00O4 -29.9662 

4* 10.0036 5.6111 -10.1241 -41.2516 

shown at the bottom of the page. The correlator SNR in terms 
of tij, ti2, and us takes the form 

SNR„ = 
«2 — 1 + <*2u2 + «3 

(47) 

Again, the special cases of d = 1 and d = 2 correspond to 
the three- and five-coefficient excision filters. For these values, 
the correlator SNR is given by 

L 
SNR„ = 

SNR„ = 

3 + 4o-2 

16L 

d = \ 

rf = 2. 

(48) 

(49) 
22 + 36ff2 

The expression in (49) is the same as the one derived in [20). 
Table 1 depicts the SNR„ in (47) versus the delay / in the 

case of random jamming. It is clear that the correlator SNR„ 
drops significantly for higher values of /. 

V. PERTURBATION ANALYSIS 

A. Even Multiplicity 

When there is an inaccuracy in the IF, the jammer energy 
at the correlator output is not zero. Let Aw(n) denote the 
perturbation error, which is the difference between the exact 
value and the estimate of the instantaneous frequency, cal- 
culated at time n. It is reasonable to assume that Ao>(n) is 
an uncorrelated stationary zero-mean random process with a 
variance equal to <r\. This error is independent of both the 
jammer and the PN sequence. We still consider the class 
of jammers given by (4). The filter notch is now shifted in 
position to the frequency w„ + Aw(n). The corresponding 
filtef transfer function is 

H(u>) = {e*" - 2 cos [wn + M«)] + «"■""} ,-iu\d (50) 

Using the same assumption of stationarity as in Section III, it 
can be easily shown that the jammer at the correlator output 
takes the form 

j0(n) = 2* A sin (w„n + <p){cos wn - cos[w„ + Aw(n)]}''. 
(51) 

The error in the IF is assumed to be sufficiently small to 
permit a first-order Taylor series expansion to the cosinusoidal 
term in (51). This expansion is given by 

/(*) = /(*o) + f'{x)\x=X0{x - io) + o(x - io).     (52) 

rap  
"     1+4 cos2 u>o + 2a2(l + 2 cos2 u>0) 

_NR 2L(H-2cos2w0)2  
*™K° ~ 2 + 32 cos2 u>0 + o2 + 16a2 cos2 u>0 + 2a2(l + 2 cos2 u>0)

2 

d = l 

d = 2. 

(40) 

(41) 

hd,2i   «w_2*-*->   l2 

is even) 

even) 

d d      K«*+I/I)/2J  l(rf+l/l)/2J 

U2 = Y: WJ =Y,  I:    E 
f=-d f=-d      r,=|/| r,=|/| 

j J(_2)M-2r,-»r,+2|/| (^ - 2r, - 2r2 + 2|/| - 1)!! 
dd(   2) (M-2n-2r2 + 2|/l)» 

' (r,)!(r, - \f\)\(d - 2r, + |/|)!(r2)!(r2 - |/|)!(rf-2r2 + |/|)! 
< 

2* 

«3 = < 

d/7 d/2 jd/2-f d!(_2)>'-2p \ 

%E{hlf"-]:=%\ S  r!(r + 2/)!l(d-2r-2/)!!j| 
d is even 

(d-D/2 t(rf+l)/2+/J l(i-J)/2+/J 

2E%+>A^I=   E      E   (*)2(-2)M-2"-2"+7 
/=1 r,=2/+l r»=2/-l 

. «r,!)(r, - 2/ - l)!(rf - 2r, + 2/ + l)!!2(r2!)(r2 + 2/ + l)!(d - 2r2 - 2m2 - l)!!2}    d is odd 

(44) 

(45) 

(46) 
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Fig. 7.   BER of different order filters at different IF (L = 64.tr2 = 1, JSR = 30 dB). 

Accordingly 

cos[wn+Au>(n)] = cos o;n-Au>(n) sin un+o[Aai(n)] (53) 

and (51) can be approximated by 

j'„(n) « 2* A sin(wnn + y?)[Au;(n) sin un)d.      (54) 

Since the correlator output due to the jammer is 

B. Odd Multiplicity 

Follow the same procedure of Part A, the jammer variance 
for odd values of d is 

c) = E\UJ\ = {2ae,f
iAi(2d - 1)!! £ 

- £{sinw u>„ sin2[a/n(n - 1) + y>]}. (59) 

Uj = JT Mn)p{n) (55) 
n=l 

then, the mean and the mean square values of Uj are, respec- 
tively, given by 

E[Uj)=0 (56) 

^/l = 4]£ £ i.(»)i.(*M«)p(*)] 
Ln=l *=1 J 

= J2 £tf(»)i (57) 

Equations (58) and (59) give the general results of the 
jammer variance at the correlator output. When the error in 
the IF estimate is taken into account, the jammer variance 
given by (58) and (59) should be added at the denominator of 
the correlator SNR expression in (37). 

For small values of 2o&, the term proceeding both summa- 
tions in (58) and (59) decays with increased d. This is due 
to the fact that a wider notch eliminates more of the biased 
jammer energy. 

Let us now consider the special cases of fixed and random 
changing IPs. With the fixed frequency u>0, (58) and (59) can 
be rewritten as 

n=l 

where we used both the zero-mean property of the PN se- 
quence and the uncorrelation between the PN values and the 
jammer. Using approximation (53) and the independence of 
Au>(n) and u>„, we obtain 

a) = E[U]\ = 27iA2E[tiuw{n)] 
l 

■ 22 £[sin2'' u/„ sm7(u>„n + ip)] 
nel 

= (2aa)Mvi2(2<f-l)!! 
L 

■ £ -E|sinM wn sin2(wnn + y>)]. (58) 
fisl 

Oj = (2<7a)2M2(2rf - 1)!! sin2* u/0 

Efl      cos(2ü>0n + 2y>)l 

[2 2 J' (60) 

For large values of L, the second term within the brackets 
in the above equation can be ignored compared with the first 
term, resulting in 

a) = E\U]\ » 2u~1c%LA2 sinM wo(2rf - 1)!!      (61) 

which reaches a maximum value at Uf, = x/2. Substituting 
(61) in the correlator SNR (38). the overall correlator SNR 
with the presence of the jammer energy becomes (62), shown 
at the bottom of the next page. 
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10" 

t 1 1       i . 

Fig. 8.    BER of different order fillers vcrou IF with IF estimate bias (i = 64, a7 = i, JSR = 30 dB. a\ = 0.02). 

As lhc special cases of d =  1 and A = 2. the correlator The special cases of d =  1 and d = 2, yield the three 
SNR for the three- and five-coefficient filters is given by (63) and five-coefficient filters with 
and (64). shown at the bottom of the page, where (63) is the 
same as in |22J. SJSJR _  

For randomly changing IF, the expected values in (58) 3 + 4a2 + A?a\ 
and (59) can be easily evaluated. In this case, the SNR ^m                      161, 
becomes SNR„ = 

22 + 36ff2 + 9LA 2a* 

d = l 

rf = 2 

(66) 

(67) 

where (67) is the same as in [18]. 

SNR„ = 
Luj 

„. . ,.  „ f(2rf — l)!!l2 VI. SIMULATIONS 

2d!! In the first set of simulations, we use the exact instantaneous 
(65)    frequency, assuming no estimation error. The jammer is of 

30 dB JSR and is given by (24) with fixed instantaneous 
frequency. The latter is varied in the range [JT/20, -n) with 

where «j, t<2, and ti3 are still given by (44)-(46) tf/20 increments. Three-, five-, and nine-coefficient multiple- 

h7
0L 

SNR„ = < 

(2+<r2) 53 h*-2hl + 22d-lff%LA*sin2iu,o{2d-l)» 

 AfL  
i d 

(1 + a2) ]jT h) - h\ +    J2    A/A-/-2 + &*-l<r%LA7 an" w0(2d - 1)11 

d is even 

d is odd 

/=-j 

(62) 

SNRoZr 
1 + 4 cos2 wo + 2<r2(l + 2 cos2 w„) + 2A2a% sin2 w0 

SNRo = 
2L(1 + 2 cos2 wp)2 

2 + 32 cos2 wo + a2 + 16<72 cos2 wo + 2o2(l + 2 cos2 u>0)
2 + 12A2a^ sin4 u0 
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(b) 

XlO 

(c) 

Hg. 9. (a) TFD of Ihe Gaussian amplitude modulated jammer >(n) = Aj *xp]j[2x/3)n - (n - 640)*/500). This jammer is periodical every 10 bits 
duration, 100% jamming, (b) Bit error rate of different filtering and filter off. The higher the filter order, the better Ihe performance. Curve of nine coefficient 
filler is already below 10~E, which is not shown on the figure, (c) Jammer instantaneous spectrum at n = 640. 

zero filters are applied. The additive Gaussian white noise 
has unit variance and is of 0 dB with respect to the signal. 
The PN length is L = 64. The bit error rate is shown in 
Fig. 7. The BER curves are consistent with the theoretical 
correlator SNR„ expressions derived in Section III and shown 
in Fig. 5. Low SNR„ corresponds to high bit error rate. The 

smallest error occurs at w8 = x/2, which is the frequency of 
the highest SNR,,- The five-coefficient filter has the highest 
SNR, which only shows three points in the BER curve. In all 
simulation examples, the BER's are provided after running 106 

bit iterations. Therefore, it is expected that the BER estimates 
smaller than 10—J appear wilh relatively high variance. 
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50 40 30 20 10 0 -10 
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Fig. 10.   BER of a chirp jomming wi.h «.imation bias using different fillers L = 128, ff2 = 1, o\ = 0.01. chirp (0 - *) in every len bits. 

In the second simulation, we induce a random error in the 
IF with variance a\ = 0.02. All other conditions are the 
same as in the first simulation. The BER is shown in Fig. 8. 
The BER curves of three- and five-coefficient filter now reach 
a maximum at 7r/2 instead of a minimum, as in the previous 
example. This is due to the fact that the jammer power at the 
correlator output is maximum at u>0 = ir/2. Therefore, as this 
component becomes dominant in the SNR„ expressions (58) 
and (61), the poorest receiver performance is bound to occur at 
■x/2. This is the case in both three- and five-coefficient filters. 
However, since the jammer variance decreases greatly for 
increased filter multiplicity d, the effect Of IF estimation error 
on the BER in the nine-coefficient filter case is substantially 
less than when using smaller-extent excision filters. Fig. 8 
demonstrates that the BER for the nine-coefficienl filter still 
shows a minimum at ir/2, even with IF estimation errors. 

In the third simulation example, we use the jammer 

(n-640)21 
500 j(n) = Aj exp 

.2* 
3Tn- 

which is Gaussian modulated with fixed frequency at 2w/3 and 
a wide bandwidth al n = 640. Fig. 9(a) shows the jammer 
time-frequency distribution. In the simulation, we vary the 
peak jammer power to signal ratio from 40-100 dB at n = 640. 
Using the exact IF, three multiple-zero excision filters are 
applied with d = 1, 2, 4, corresponding to 3,5, 9 coefficients, 
respectively. The BER's are shown in Fig. 9(b). In this case, 
the higher the filter order, the better the performance. For 
the nine-coefficient excision filter, the error rate is below 
10-6, which does not appear in the figure. The reason for 
this performance is that lo effectively remove the underlying 
jammer whose power spectrum is shown in Fig. 9(c), the 

excision filter frequency response should exhibit a wide notch 
at 2ir/3. It is clear from the filter frequency response in Fig. 2 
that d = 4 should lead to the best performance. 

In the fourth set of simulations, we test the filters using 
a chirp jammer with a random IF estimation error variance 
a\ = 0.01. Four filters are applied: d = 4, I = 0; d = 2, 
I = 0; d = 1,1 = 1; and d = 2, / = 2. The PN length is 
L = 128. The white noise is 0 dB. The IF changes from 0 to 
■n in every ten bits of duration. The jammer power is varied 
from -10 to 60 dB with 5-dB increments. We ran 1 000000 
bit iterations for each JSR value. The bit error curve is shown 
in Fig. 10. The excision filter with d = 2 outperforms that 
with d = 1. However, as argued before, the five coefficient 
filter with / = 2 yields poor BER. With the underlying IF 
estimation error and high jammer power, the nine-coefficient 
filter provides better results than the excision filter of d = 2. 

VII. CONCLUSIONS 

Analysis of the open-loop adaptive filtering interference 
excision spread spectrum communication receiver has been 
provided. We have focused on a class of jammers that are 
characterized by their instantaneous frequencies. Multiple-zero 
FIR filters whose notch is in synchronization with the jammer 
IF have been applied to remove the jammer power at every 
time sample. These filters are described by three parameters, 
namely, the zero location, the zero multiplicity, and the 
group delay. Expressions of the receiver SNR incorporating 
these three parameters have been derived. It is shown that 
for improved receiver performance, the filter group delay 
must depend on the filter zero multiplicity. Specifically, even 
multiplicity excision filters must be of zero phase. 
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High-order multiplicity filters have been proposed for two 
primary reasons. First, these filters have broad notches, which 
will tolerate reasonable bias in the jammer IF estimate. Second, 
broad notch filters are more effective in excising the jammer 
energy when it is widely spread around the instantaneous 
frequency. 

The two specific cases of three- and five-coefficient filters 
and their corresponding correlator outputs and signal-noise 
ratios, which have already been devised in the literature, were 
shown to be special cases of the general approach presented 
in this paper. 
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ABSTRACT 

In this paper, the well known notch filtering technique for interference excision in direct sequence spread spectrum 
(DS/SS) communications is expanded, so as to remove the constraint that the instantaneous frequency (IF) of the jammer must 
be constant over the filter duration. The time-varying difference equation representation of a polynomial phase signal is used to 
define a new filter impulse response that can effectively remove any polynomial phase interfering signal. It is shown that this 
approach, when applied to jammers with constant modulus property, is more efficient than the existing excision methods 
implementing notch excision filtering. This paper focuses specifically on chirp signals, and provides both the receiver SNR 
and bit error rate (BER) curves, thus showing the improved performance over similar approaches based on instantaneous fre- 
quency information. 

1.   INTRODUCTION 

One of the primary motivations for direct sequence spread spectrum (DS/SS) communications is that of interference 
mitigation. By definition, a DS/SS system is one in which the transmitted signal is spread over a bandwidth much wider than is 
required to transmit the information, by means of code independent of the data. The availability of this code at the receiver 
enables the despreading and recovery of the data, while spreading and suppressing the interference. Thus, any level of interfer- 
ence rejection can be achieved with sufficient processing gain. However, this may require increasing spectrum of the transmit- 
ted signal beyond the available limits. Therefore, signal processing techniques are often used in conjunction with a DSSS 
receiver to combat significant amounts of interference1'2-3-4. 

The recent advances in instantaneous frequency (IF) estimation have motivated a new open-loop adaptive filtering 
approach for nonstationary interference excision in spread spectrum communications. In this approach, the received data is 
processed by a short length time-varying finite impulse response (FIR) filter with a notch synchronous with the jammer IF. The 
implementation of IF-based interference excision systems utilizing the localization properties of the time-frequency distribu- 
tions (TFD's) have been thoroughly analysed5*-7. Expressions for the spread spectrum receiver SNR incorporating an IF esti- 
mate of the time-varying interference using three and five-coefficient notch filters have been derived and extended to the multi- 

component case8. The effect of the IF estimation error on performance has also been considered . 

The fundamental concept behind the open-loop adaptive filtering approach to interference excision is to place a filter 
zero synchronous with the jammer. This zero, which is positioned on a unit circle with a phase equal to the jammer instanta- 
neous frequency, effectively removes the interference, causing the filter output to be essentially jammer free. However, for this 
excision method to work effectively, the IF of the jammer must remain constant or change slowly over the filter extent. In 
effect, the excision filter coefficients at time instant n are chosen such that the filter can remove a fixed frequency sinusoid 
whose frequency is equal to the interference IF at the same instant n. This methodology is illustrated in Fig. 1 a. When this con- 
dition is strongly violated, much of the jammer power will escape the excision process, leading to increased bit error rates and 
deteriorating receiver performance. This undesired property of the notch filter approach to interference excision in rapidly 
time-varying environment will be clearly demonstrated in the simulation section. 

This work is supported by the US Air Force Research Laboratory. Rome.NY, contract «F30602-96-C-0O77 
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In this paper, we over come the above drawback by presenting a modified version of the notch filler approach to jam- 
mer excision in DS/SS communications7. Since the jammer IF is already estimated at each sample over the filter extent, it 
makes sense to use this information in the design of the excision filter. The time-varying difference equation representation of 
a polynomial phase signal can be used to define a new filter impulse response that can entirely remove any interfering signal of 
constant modulus characteristics. Further, if an approximation to the IF curve of the interference is to be performed, it is more 
prudent to approximate the IF by a piece-wise curve, i.e., chirp functions, rather than stair case constant frequency segments*. 
Figure lb. illustrates this point, as it demonstrates that the piece wise approximation provides a better fit to the IF curve than 
the stair-case approximation and, as such, will, significantly reduce the jammer power at the filter output 

The paper is organized as follows. In section 2, the time-varying difference equation for the monocomponent com- 
plex chirp signal is presented. These equations are then employed to cover the special case of real valued interference signal. 
In section 3, the expression for the receiver SNR implementing the proposed excision approach is derived. Computer simula- 
tions are presented in section 4 to illustrate the advantages of the new method over similar excision techniques which are also 
based on IF information. 

2. TIME-VARYING DIFFERENCE EQUATION REPRESENTATION OF A POLYNOMIAL PHASE 
SIGNAL 

Let x[n) be a polynomial phase signal, representing the nonstationary interference with time-varying frequency 

*ln] = *JQM (1) 

where  Q[n} = a0 + a,.n + a^n7 +..., is the phase function. The phase at any time instant can be written as sum of the phases at 
the time instant (n-1) and a time increment AQfn). 

Bin) = e[n-/] + A0[n] (2) 

The instantaneous frequency is therefore given by 

/[„) = Aet"l = (e[n]-e[n-7]) (3) 

The discrete-time signal x[nj in (1) can be rewritten as 

x\ri\ = eJ V = a[n]x[n-l) (4) 

where aW = eiA0["] (5) 

Accordingly, if both the first sample and the jammer instantaneous frequency are known, the interfering signal can be easily 
constructed and removed. If we consider the genera] case of a signal composed of M complex sinusoids 

M 

*W =   X JC»[',J (6) 

m = 1 

It can be readily shown that the overall difference equation describing the signal x[n] is9 

54 



MM 

x[n] =   £ ikWx[n-k\ =    ]T   cm[n]xJn-J) (7) 

* = 7 m=] 

where the coefficient cm are given by the relations' 

<Wn] = cTn-k["n'        c»>ln] = I '-w«*w (8) 
m
 * = / 

A real valued sinusoid with time-varying frequency is a special case of the above complex sinusoids. For a real chirp 
signal, xfnj can be written as the sum of two complex exponentials with phases A67[n] = -A62[n]. In this case, it is easy to 

show that the coefficients of the difference equation are given by 

r ,      jm(Ae[n] + Ae[n-7])       ... r , _ .  „   ji/i(A6[n])     _ ,  . , (9a) 
7(A9[n-7]) 

For the case of a sinusoid of fixed frequency the coefficients of the difference equation reduce to 

aj[n] = 2c<w(A9[n]), a2[ii] = -7 (9b) 

3.  INTERFERENCE EXCISION 

The coefficients of the difference equation, as derived in the previous section, are used as the filler taps for interfer- 
ence excision. The impulse response of the excision filter thus becomes 

hk[n1 = 8(n)-A;[/i]5[n-;j-A2[n-2]8[n-2] (10) 

The coefficients in the above equation are updated every time instant, using the jammer instantaneous frequency (IF) 

information1. It is important to note that the filter performance is very sensitive to the initial conditions. This is because any 
error made in the initial stages accumulates quickly and gives rise to a very large error after a short time period. However, if the 
initial conditions are reasonably accurate, interference excision becomes effective and leads to satisfactory receiver perfor- 
mance. 

The received signal is of the form r(t) = s(t) + w(t) + i(»), where w(t) is the uncorrelated white noise signal, s(t) is 
the desired signal and i(t) is the interfering signal. The input to the excision filter is the sampled received signal tin), and the 
filter output is y(n), which is given by the equation 

2 

y(n) =   ^hkWr(n-k) (11) 

k = 0 

!This information can be provided using time-frequency distributions or any other IF estimator 
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Due to linearity, the filter output can be written as the summation of the outputs due to each of the individual compo- 
nents. This can be expressed as 

L L L 

v = Y, PWPOW 
+ X »„("M") + X WPW (12) 

n = I n = 1 n = I 

where the subscript "o" denotes the output of the filter, L is the number of chips/bit, p(n), w(n) and i(n) represent the sampled 
versions of the direct sequence, noise and interference components of the input data over a bit period, and U is the decision 
variable. Let 

U = Uj + U2+U3 (13) 

where the term Uj is given by 

fiaXjM"W»-JW») (,4) 

n = Jk = 0 

and its expected value is 

L 
E{U,} =   'YJ[p(n)p{n) + hJ{n)p(n)p(n-l) + h2{n)p{n)p{n-2)} = L (15) 

n = I 

Assuming the interference signal to be a real valued chirp signal, the mean square value and the variance of Uj are, respec- 
tively given by 

-f.,21        V» rfsinWW + Wn-im2 , (   wi(A8In])   Vl       2 „ 
E\UI] ~   L LI ,«(A9[n-7]) J  + U(A9[n-7J)J J + L ■ °5) 

n = / 

1/   Jir2l _   vr^(AB|^)tAe[ll-;))V,<,   jm(A8[n])  Vl 
KBr|l/iJ-   2-Ll       wi(A9[n-7J)       )     Un(A9[n- 7])J J 

n = / 

The expected value of the variable U2 due to the additive noise is 

L      2 

E{U2) =   £  ^hk(n)w(n-k)p{n) = 0 (17) 

which is the result of the uncorrelation property between the noise and the PN sequence. The mean square value of U2 is 
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Jl^J = O   L+ ^ || sin(mn-W      ) +U(A9[n-7])J JJ 
L       n = / 

(18) 

With full excision 

£Jt^] = 0   and£{l/5} = 0 <19> 

The receiver signal to noise ration (SNR) is 

SNR -        /<"> 

From equations (10-19) the SNR of the receiver with chirp like approximation for real valued chirp interference signal is 

L  (20) 
SNR = "  v   ' 

U + a2) 
' ^ MsiniABW + mn-im2 . (   sinjAQW)  fl] 
L [{       sm(&6[n-l])       )      U«(A9[n-1})) JJ 

-n = 1 

.   2 + Lo 

It is noteworthy that for the case of a sinusoidal interference signal with fixed frequency co = coB, it can be seen that the above 

expression for the receiver SNR simplifies to 

sm m  k-  (2D 
\j +4cos *on + 2a U + 2cos toll 

which is the same as the expression (40) derived in reference '. 

4. COMPUTER SIMULATIONS 

In this section we present computer simulations to illustrate the performance of the proposed method, and compare it 
to the stair-like filter. Both the real and complex interference scenarios are considered for the polynomial phase approximation 
filter. Figure 2 depicts the staircase approximation filler output in both the time and frequency domains for a real-valued chirp 

signal with o»0 = 0.3 + o(2/i - 7). It is evident from Fig. 2 that the filter output is more pronounced for o = ^ (Fig. 2e to 

Fig. 2h) than the case of small rate chirp signal alone, i.e. a = JL (Fig. 2a to F.g. 2d). However this is not the case for the 

chirp-like approximation filler. Figure 3a shows the frequency spectrum of the Interfering signal and Fig. 3b shows the corre- 
sponding frequency domain output of the piece-wise approximation filter. Figure. 3c and F,g. 3d present the signal in üme 
domain. These figures illustrate that the polynomial phase filter output is practically zero when the input signal is composed ol 
the interference. 
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Finally, bit error simulations were performed with 128 chips/bit over a variety of Jammer-to-Signal ratios(JSR). The 
curves in Fig. 4 were produced. Figure 4a presents the results for the stair-like approximation filter. Figure 4b. presents the 
results for the piece-wise approximation filter. 1,000,000 trials were used for these plots. These curves show that the BER for 
the case of piece-wise appxoimation are lower that those that can be obtained with the stair-case approximation. 

5. CONCLUSIONS 

This paper has presented an improvement to the notch filtering method of interference excision in DSSS communica- 
tions. This newly proposed technique eliminates the constant IF constraint assumed by the stair-like approximation, and allows 
the IF information to be utilized to the fullest extent. Improved performance has been demonstrated both mathematically and 
through computer simulations. For the case of sinusoidal interference signals, it can be shown that the polynomial phase 

approximation filter is the same as the three coefficient filter*. A closed form expression for the receiver SNR were derived for 
the case of sinusoidal interference signals 
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Figure 1 a.   The stair like approximation of the instantaneous frequency of the signal under consideration 
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Egure lb.    The Chirp like approximation of the instantaneous frequency of the signal under consideration 
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Rgure 2a, 2b.  IT« frequency spectra of the interference and the output of the niters (stair like and chirp like approximations), 

(c) The interference signal in lime domain, (d) The output of the fillers in lime domain. (The chirp-rate is o = ^.) 
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Figure 2e, 2f. The frequency spectra of the interference and the output of the filters (stair like and chirp like approximations), 

(g) The interference signal in time domain, (h) The output of the filters in time domain (chirp rate    ct = ^    ). 

61 



35 
»10 

25 

3 
« 
5U 

05 

I 
I 
i 
5 

!!i 

i1' 
i 
i 

I !* 
■v^...*4.v.^^.    f^AvV 

-1 0 

Frequency 

(b) 

3 

Figure 3a, 3b. The Frequency Spectrum of the complex interference signal and the output of the Chirp-like and Stair- 
like approximation filters. (3c) Real part of the interference signal (3d) Real part of the output of the filter. 
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Figure 4. The plot of the BER for different values of the JSR as a function of the Signal to Noise Ratio SNR(dB). The 
number of trials in the simulation is 1,000,000. Fig. 4a. BER curves for the stair-like approximation. Fig.4b. BER curves for 
the piece-wise approximation 
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Abstract 

A new technique for interference excision in PN 
spread spectrum communications using time-frequency 
distributions is introduced. Tt\e excision filter coefficients 
under this technique depend on the jammer power and its 
the instantaneous frequency information, both values are 
gained in the time-frequency domain. The dependency of 
the. excision filter characteristics on the interference 
power, which was absent in previous contributions in this 
area, is of significant importance, as it allows optimum 
trade-off between interference removal and the amount of 
the filter self noise generated from the induced correla- 
tion across the PN chip sequence. This trade-off is 
bounded by the hvo extreme cases of no self-noise, which 
implies preprocessing disabled, and full interference exci- 
sion, which the case previously considered. In this paper, 
we derive the FIR excision filters that maximize the 
receiver signal-to-noise ratio for a simple jammer case. 

I. Introduction 

Several past contributions deal with ihe suppres- 
sion of narrowband interference [ 1,2.3,4]. For broadband 
interference, adaptive linear prediction filters have been 
commonly employed to track and remove the lime-vary- 
ing frequency characteristics of the interference [5]. Two 
different approaches for nonslationary interference exci- 
sion in DSASS communications based on time-frequency 
analysis have been recently considered [6,7,8,9). One 
approach is linear and based on multiresolulion analysis, 
whereas the second approach requires a bilinear transfor- 
mation of the data, in linear transform interference exci- 
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sions, the data is processed using Fourier, Gabor, or wave- 
let transforms or M-band/subband filler banks. Excision 
of the correlated interference components of the received 
data is performed by clipping, or gating, the high coeffi- 
cient values followed by inverse transformation to recover 
the desired signal. 

In the recently developed open-loop adaptive fil- 
tering approach for interference excision [9,11,12], a fil- 
ter zero is put synchronous with the jammer instantaneous 
frequency (IF), which is estimated using Cohen's class 
[10] of time-frequency distributions '(TFDs). This zero, 
which is placed on a unit circle with a phase equal to the 
jammer IF, causes an infinite deep notch, and thereby, 
effectively removes the jammer, causing the filler output 
to be essentially jammer free. However, this type of filter 
characteristics also create significant amount of self- 
noise, due to the correlation introduced across the differ- 
ent chips of the PN sequence. In a jammer free-environ- 
ment, the filler self-noise reduces the receiver 
performance from the case when no preprocessing is 
applied as it limits the maximum attainable value of the 
correlator SNR. Depending on the filler characteristics, 
this value may very well be far below the spreading gain. 
Although in general, excision fillers should be shut off if 
no jammer is present, the problem with the aforemen- 
tioned interference excision system which is based solely 
on the IF information [9] is that even under significant 
jammer power, the performance is still worse than when 
preprocessing is disabled. This should not be the case if 
the filter coefficients are properly chosen. 

In this paper, the TFD-based interference exci- 
sion technique is further developed for application to a 
wide range of jammer to signal ratios (JSR). Since the 
TFD is the distribution of the signal power over time and 
frequency, then, in addition to the IF estimate, TFDs 
depict the instantaneous power of the different compo- 
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ncnts of the received signal. The amplitude information of 
the interference gained in the t-f plane is used to control 
the notch of the excision filter, achieving a higher receiver 
SNR than the case of a fixed depth notch. Preprocessing 
the data before depreading produces a trade-off between 
the self-noise introduced by the filter and the effective 
removal of the jammer power. In order to account for this 
trade-off, the original open-loop adaptive interference 
excision system introduced in [9] is herein modified such 
that the filter notch location depends on the jammer IF, 
whereas the depth of the filter notch is controlled by a new 
variable, which is a function of jammer power This vari- 
able is selected to achieve an optimum receiver perfor- 
mance for a given jammer environment. 

It is noteworthy that the need to have both the 
instantaneous power and frequency to derive the proposed 
optimum excision of the interference advocates the use of 
TFD [10] and clearly distinguishes it from other estima- 
tors, which only give the IF. The analysis provided in this 
paper, however, can be used in conjunction with any detec- 
tion scheme that provides the above two values [13]. Per- 
fect knowledge of the jammer amplitude and IF is 
assumed. It is recognized that in using TFD, both of the 
above parameters will carry an error, depending on the 
jammer signal characteristics as well as the employed t-f 
kernel. 

II. Narrowband Interference Analysis 

A simple jammer with a fixed frequency is now 
considered. The general expression of the receiver SNR 
using linear time-invariant interference excision filter of 
coefficients A,-, i=J,2,...,N, is derived in [12] and given by 

SNR, 
L\ 

.2  - 

(I) 

where L is the PN length, o is the white noise variance, 

and Oj is the jammer power. In the following analysis, we 

focus on the three-coefficient causal notch excision filter 

//(z) = z   (z-ae      )(l-oz   e    ) 

= l-2az~'coscü0 + aV2 (2) 

where the parameter a represents the amplitude of the filter 
zero that controls the depth of the filter notch at the jam- 
mer frequency u0. The effect of this parameter on the fil- 

ter frequency response is shown in Fig. 1(a). The filter 
impulse response comes directly from the definition of the 
Z-transform 

h{n) = 5(/I)-2O8(/I- l)cosco0 + a25(/i-2) (3) 

If     we      denote      the      filter      coefficients     by 

h0 = 1, A, = 2acos«D0< h2 = a ,  then  the corresponding 

receiver SNR is a special case of (1) and is given by 

SNR  = 2 4 2      2 2 
i[(l + 0" )(1 +fl   + 4<3 COS <D0)- ]] + Oi 

(4) 

The self-noise introduced by the filter H(z) is given by the 
first term in the denominator of equation (4), i.e., those 
terms dependent solely on the filter zero amplitude param- 
eter a, 

2 4 2 as = L(a +4o cosa>0). (5) 
The white noise sequence also becomes colored at the 
excision filter output and its contribution to the receiver 
SNRo in (4) is given by 

o„ = La (1 + a4 + 4a COS(ü0). (6) 

2       2       2 The quantity aT=as+cw is the receiver noise in a jam- 

mer-free environment, so, we may refer to it as the jam- 
mer-free noise or the total self-noise (TSN). It is clear from 
equations (5) and (6) that the minimum value of the TSN 
occurs at a=0, and increases monotonically as a function 
of a. Figure 1(b) shows the zero-diagram of the notch filler 
for different   values  of a.  For  high jammer power, 

2 2 a* »oT, the interference removal becomes more impor- 

tant than reducing the TSN. In this case, a high value of a 
should be chosen such that a deeper notch is introduced. 
The jammer is entirely removed in the extreme case of 
o=l, which is discussed in the original design [9]. On the 
other hand, as the jammer power decreases, the choice of a 
should tend towards favoring the reduction of the total self- 
noise over the jammer power, and to ultimately shut off the 

2        2 2 filter, for oJ + ow»o-, disabling preprocessing of the 

received signal prior to despreading. 

To obtain o-, it is prudent to first derive an 

expression of the jammer waveform that escapes the exci- 
sion filter when a * 1. Consider a narrowband sinusoidal 
jammer of the form j(n) = A sin(nto0 + 9), where A is the 

jammer amplitude and <p is its phase. The jammer at the 
filter output is given by 

/o(") = ><(l-fl)sin(n(D0 + 9) + (a -o)/tsin[(n-2)(00 +<p] 

The correlator output due to the jammer is 
L 

Uj= ZM»)PW (7) 
11=1 

where the p(n) is the PN chip sequence. Accordingly, 
L 

02j = ElU2
j]-E

2lUJ)= X^(»)- (8) 
■ «1 

It can be readily shown that forL»l, 
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o;»L/l2(l-D)2[l + |--flcos2to0] (9) 

Substituting (9) in (4), the receiver SNR becomes 

SNR0 = iy{(]+O2)(l+fl4 + 4a2cos2(i)0)-l + 

/42(l-a)2[± + |--0Cos2cDo]} (10) 

The jammer power given by (9) has a minimum value at 
n=l, and monotonically increases for both increased and 
reduced values of a. Equation (9) can be rewritten as 

o,- = y[(l-fl/ + 2O(l-O)2(l-C0S2(00)] (11) 

Careful study of the above equation reveals that the value 

of Oj  increases faster for a>\ than for a<\. This is 

because both factors (1-aj and (1-a) are invariant 

for a = 11A. Due to the appearance of a as a multiplica- 

tive factor in the second term, o • will be greater for + A 

than for -A . Negative values of a change the filter notch 
position and move it away from co0, and therefore should 

be avoided. Since the self-noise increases for increased 
value of a, as stated earlier, one can conclude that the 
minimum value of the dominator in the SNR0 expression 

(10), a,-, should occur for a in the range [0,1]. 
IFfla) represents the denominator in (10), then 

in order to find the maximum SNRQ, we simply differenti- 
a\eßa) with respect to a, 

/(a) = <33(4 + 4o2 + 2/l2) + D2(-3/l2-3J42cos2(i)0) + 

2        2 2 2 2        2 (12) 

o[8(l +o )cos (ö0+2/l   +4>4 cos2io0)-(/l   +/t cos2to0) 

and sets f'(a)=0. Since /(0)<0 Vco0 , except at 

io0 = JI/2 where/(0) = 0,and/(l)>0 for all values of 

<j)0 , then f(a) must have a real root in the range [0,1], 

which represents the optimal a. For the specific value of 

o)0 = n/2, /(0) = 0 and f{0) = -2/»2<0. This means 

/(0_ )<0. With /(1)>0, f(a) must then intersect the 

f(a) = 0 axis in the range [0,1], and the same conclu- 

sion can be drawn for <o0' = n/2 as for a>0* n/2. 
To solve  for a, we rewrite  the  polynomial 

f(a)=0as 

(13) ba + ca  + da + e = 0 
where 

fc =4 + 4o2 + 2i42 

2 2 c = -3A  -3A cos2u>0 

2        2 2 2 
d - 8(1+ o )cos (ö0 + 2i4  +4>4 cos2(00 

2        2 
e = -{A  +>4 cos2(00) 

(14) 

and substitute fc = a , 
3c 

a + pa + a = 0 
where 

P = 
3bd-c e    cd 2c 

3b- °   3b-   lib' 

The roots of polynomial (15) are given in [14], 

(15) 

(16) 

- ■ 'ffWWh'ffWWl 

where y _ -1+J./3 

If q<0, then a2 and a3 are complex due to the presence of 

Y and its complex value y . Accordingly, at should be 

real. On the other hand, if q=0 as in the case of to„ = n/2, 

then ai becomes zero and p is given by 
.2 

P= i = 
-2A 

4 + 4o2 + 2A2 
<0, (18) 

In this case, it can be easily shown that a2 and a3 are both 
real, and have opposite signs with magnitude smaller than 
one. Accordingly, there is only one positive real root 
which should be in the range [0,1], as argued before. 

HI. Performance Improvement 

A fixed frequency jammer excised by a three- 
coefficient filter is considered. The optimal value of a is 
computed from equation (12) and substituted back into 
the SNR expression to provide the maximum SNR for a 
given jammer power and frequency. Figure 2 compares 
the correlator SNRs using the original excision filter, no 
excision filter, and the optimal excision filter. It is evident 
that for low jammer-to-signal ratio, shutting off the exci- 
sion filter, leads to a higher receiver SNR than processing 
the data with the original excision filter, which only 
depends on the IF information. This situation is reversed 
for a high jammer power where the original filter outper- 
forms the case when preprocessing is disabled. But, the 
performance of the proposed optimum interference exci- 
sion filter asymptotically reaches the desired performance 
of both the IF-based excision and no excision for high and 
low jammer power, respectively. In between these two 
extreme cases, the proposed excision filter, which is based 
on both the amplitude and frequency of the jammer, gives 
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clear improvement over the other two techniques. That is, 
the optimal notch filter gives an excellent trade-off 
between filtering and no filtering and as expected, a 
increases with increased jammer power. 

In Figures 3-4, we compare the receiver perfor- 
mance versus the interference IF. The optimal excision 

■ filtering curve depicting the change in SNR vs frequency 
is not only above the other curves, correspondingly to the 
two alternative aforementioned techniques, but also it 
becomes much flatter than the receiver SNR curve of the 
original filter. This means that a by-product of the pro- 
posed approach is to make the receiver SNR less depen- 
dent on the jammer IF. 

Figure 5 shows the computer simulation 
results of bit error curve. A chirp jammer whose fre- 
quency changes from 0 to n in every bit duration and a 
white noise sequence with 0 dB relative to the signal are 
both added to the PN sequence of length L=64. One mil- 
lion bits are tested at every 2 dB JSR increment from - 
1 OdB to lOdB. Consistent with the result in SNR analysis, 
for low jammer to signal ratio, applying no filter leads to 
lower bit error rate than processing the data with the orig- 
inal excision filter, whereas for a high jammer power, the 
original filter has lower errors than the case when prepro- 
cessing is disabled. Because the optimum notch, adaptive 
coefficient filter outperformances both cases above. It 

gives a bit error rate of 10~5 at 10 dB JSR and smaller 
rates at lower JSR. 

Conclusions 

An optimum open-loop adaptive notch filtering 
approach for interference excision in PN spread spectrum 
communications has been developed and discussed in this 
paper. The FIR filter with variable depth notch that par- 
tially removes the jammer achieves optimum receiver 
SNR over both extreme cases of full jammer excision and 
no excision. The optimum performance is reached by 
trading-off the jammer power and filter self-noise. The fil- 
ler notch is controlled by a new variable whose optimum 
value is a function of the jammer power, the jammer 
instantaneous frequency, and the white noise power. Sev- 
eral examples have been presented which show the 
improvement in the receiver signal-to-noise ratio 
achieved by using the optimum excision filter over both 
cases of preprocessing disabled and preprocessing 
enabled, but only based on the IF information. This 
improvement is exhibited over a wide range of JSR, and 
is shown using exact value of the interference amplitude 
and instantaneous frequency. 
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Fig. 1(a)   Frequency responses of the ihree-coefficent 
adaptive notch filters with IF=7t/3. 

Fig.3 JSR=OdB, OdB white noise, PN Iength=128. Corre- 
lator SNR with 3 coefficient filters and filter off versus 
jammer IF. 

Fig.l (b) Zero diagram of the adaptive notch filter and the 
exact jammer frequency, 'o', zero position, '+', exact 
jammer frequency. 

Fig.4 JSR=20dB, OdB white noise, PN length=128. Corr- 
elator SNR with 3 coefficient filters and filter off versus 
jammer IF. 
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Fig.2 IF=n/2.1, OdB white noise, PN length=128. Corre- 
lator SNR with 3 coefficient filters and filter off. 

Fig.5 Bit error rate of the three-coefficient filter 
with adaptive filter coefficient, fixed coefficient 
and filter off. OdB white noise, PN Iength=64. 
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ABSTRACT 

The zero-tracking time-frequency distribution (TFD) is 
introduced. The local autocorrelation function of the 
TFD, defined by an appropriate kernel, is used to form a 
polynomial whose roots correspond to the instantaneous 
frequencies of the multicomponent signal. Two tech- 
niques for zero-tracking based on TFD are presented. 
The first technique requires updating all of the polyno- 
mial signal and extraneous zeros, and is based on the for- 
mula relating to the first order approximation, the 
changes in the polynomial roots and coefficients. The 
second technique employs the zero-finding Newton's 
method to only obtain the zero-trajectories of interest. 

1. INTRODUCTION 

Recently, quadratic time-frequency distributions (TFD), 
including of Cohen's class [1], the affine class, and the 
hyperbolic class[2], have been introduced for nonstation- 
ary signal analyses. TFDs have been shown to be a pow- 
erful tool for instantaneous frequency (IF) estimation in 
rapidly time-varying environment [3]. These distribu- 
tions do not assume a model which is signal specific, as 
in the case of extended Kaiman filters [4], nor they are 
encumbered by high computational requirements, as in 
the case of Hidden Markov Models [5]. Further, TFDs 
can handle multicomponent signals, and as such, outper- 
form existing techniques which are only applicable to a 
single tone scenario [6]. TFDs are obtained by taking the 
Fourier transform of the local autocorrelation function 
(LAF). The later is computed by time-averaging the 
bilinear data products. The averaging is performed by 
applying a kernel which acts on satisfying several desir- 
able time-frequency properties including the marginal, 
support, instantaneous frequency, and reduced cross- 
terms. 

In this paper, we introduce zero-tracking time-fre- 
quency distribution methods for instantaneous frequency 
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estimation. The motivation is two fold and is analogous 
to that of zero-tracking adaptive filters, namely computa- 
tional savings and enhanced performance. The proposed 
methods avoid the Fourier transform and utilize the fact 
that the local characteristics of the signal are captured in 
its LAF. 

Because of the localization properties of the time- 
frequency distributions, the location of the spectral peak 
at time n represents the signal instantaneous frequency. 
Multiple peaks are a property of a multicomponent sig- 
nal. In TFD computation, the FFT is used at each time 
instant. It is important to choose a long FFT block length 
to properly locate spectral peaks and estimate the IFs. 
This may require extending the data record to include 
more data samples, or by zero padding. The cost of 
applying a high resolution FFT on a data sample by a 
data sample basis along with a search routine can be 
avoided by directly extracting the information from the 
local autocorrelation function without Fourier transfor- 
mation. 

By constructing a polynomial whose roots are 
located at the TFD peak positions, one can apply zero 
tracking algorithms to provide the zero trajectories, i.e., 
the signals instantaneous frequencies. Two methods for 
zero updating are introduced. The first follows the same 
approach adopted in zero-tracking adaptive filters [7], but 
with application to the local autocorrelation function, 
instead of the filter coefficients. In this case, the zero tra- 
jectories are provided using the formula relating the 
changes in the LAF coefficients to the polynomial zeros. 
The second method is introduced to mitigate the prob- 
lems inherent in the first method, namely the need to 
update all zeros including those which are extraneous, 
i.e., do not correspond to the signal IFs. In the second 
method, new polynomial zero positions are obtained by 
applying an iterative technique similar to that of New- 
ton's method [8] for root finding. It is shown that this 
method works well in low signal-to-noise ratio and under 
both evolutionary and abrupt changes in frequency. 



do 

2. POLYNOMIAL DERIVATION 

Tbc basic idea of zero-tracking applied to the under- 
lying problem is to find a polynomial in which all the sig- 
nal instantaneous frequencies (IFs) are among its roots. 
We then proceed to identify the signal roots and follow 
their trajectories. 

Let R^n) denote the local autocorrelation function 
at time n and lag /. The TFD is given by 

m 
y^) = S we-*-' (i) 

tm-Ul 

where LV2 is the maximum lag of interest Y(e?*) is real 
and it peaks at the instantaneous frequencies of the multi- 
component signal, represented by eo,(n) .co^/i), 

..., o>M(n). Accordingly, 

ui 
= -/2  £   «/(n)^",= 0   (2) 

I«».! sis* /..^ 

Substituting e^2" = z, (2) can be rewritten as 
ui 
X  /A/(»»)r"/=0   . (3) 

By multiplying the above equation by ^ we obtain 
ui 
X   //f^)z-'+l/2 = 0 (4) 

I'-m 
which is the L-th order polynomial: 

/»<*) = V»>+ "i^)2 + °2(n)z2 + — + aLWzL = 0 (5) 
a, = (- / + Ul)R_ULn(n), l=0,I..^L (6) 

The instantaneous frequencies are among the above poly- 

nomial roots in the form of e    ',1 Si £W, and therefore 
can be obtained from the polynomials' zero trajectories. 

It is important to note that since the polynomial fjx) 
is based on the LAF, time-frequency kernels which yield 
reduced cross-terms should be used for proper IF estima- 
tion. 

3. ZERO-TRACKING ALGORITHMS 

Two techniques for zero-tracking based on the LAF of 
the TFD are considered below. 

A Orfanidis-VaiV* Method 

This method is based on using the formula, relating 
to the first-order approximation, the changes in the poly- 
nomial coefficients and its roots. Equation (5) can be 
written in the factorized form as 

a0(n) + a, (n)z   + a2(n)z~2 +... + aL(n)z~t 

(7) 
= «o<"Xl -*i(")r')(I -z2(n)z_,)...(l -zt(«)z-') 

where Zj(n) is ith root The roots are updated by 

*,(" +1) = r,(«) + £x,W,    1 £ ii L (8) 
where 

L 

**•> - I KTSJ^-^W (9) 
M>0 

The partial derivatives in the above equation are given by 

Äz.(") = 
Z/(") 

Z-M 

(10) 5*^,v" v»)nw«)-*/»» 
This algorithm can therefore be summarized as: 1) 

At time n, the LAF is available, and so are the coeffi- 
cients a^n). 2) Compute the zero updates using (9), and 
update the zeros using (8). 

The problem with the above zero-tracking method is 
that all the polynomial roots need to be updated, as evi- 
dent from equation (10). This entails heavy computations 
and becomes inefficient, especially for small values of M 
as well as high spectral resolution requirements. As 
shown below, zero-tracking based on Newton's method 
can allow only selected zeros corresponding to the IFs to 
be updated. 

B. Zem-Trnckinp Based On Newton's Method 

A well-known numerical root finding method, New- 
ton's Method, is very suitable for the underlying prob- 
lem. Given the form of the polynomial (5), the ith root 
can be found by 

.(*) tt-i>   /(*,-  ) a« 
where k is the iteration number. If the initial guess of 

the root, z,- , is in the neighborhood of the exact root, 
then the Newton's method is quadratically convergent 
m. 

It is assumed that the IF corresponding to the ith root 
is changing over adjacent time samples such that the root 
at the nth time sample is in the neighborhood of the new 
root at time n+1. Newton's Method can then be applied 
by using the last root value as the initial guess in (11). 
Due to the quadratical convergence, the new root value, 
and subsequently the corresponding IF, will be quickly 
reached after very few iterations. 

A situation may arise, however, in which the incor- 
rect zero is tracked. This may occur if we start with an 
extraneous zero and follow its trajectory, or by starting 
with the correct zero and losing its trajectory to another 
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one, which is extraneous. In order to circumvent or miti- 
gate this problem, we propose the following four guid- 
ance procedures. 
• The Zero-Tracking Correction Technique 

It is needed to find the exact roots corresponding to 
the IFs at the earty stage of tracking and whenever track- 
ing of the correct roots is lost due to fast changing IF or 
other problems. In this case, we use TFD and peak pick- 
ing to identify the signal zeros. 
• Power Monitor 

To find out whether the tracking follows the wrong 
trajectory, we simply monitor the power of the signal at 
ti*JFa>fn). 

PW»)) -   X R^)e~i2V"Wl (12) 
Im-Ul 

Whenever the power of a tracked IF is lower than a 
threshold, it is declared that the algorithm has lost the 
correct zero. The zero-tracking correction technique must 
then be applied. 
• Loss of Resolution 

Due to the finite extent of the LAF, or equivalendy, 
the finite order of the polynomial in (5), two closely 
spaced IFs will be presented by one peak in the TFD, and 
subsequently, one zero in the corresponding polynomial. 
In this case, the two zero trajectories will merge into one. 
In time-varying environment, loss of resolution may, 
however, lasts for small periods of time. For example, in 
the case of two crossing chirps, only the vicinity of the 
intersection point may represent a resolution problem. 
Once the two chirps move farther apart, TFD should 
show two peaks corresponding to the autoterms, and sub- 
sequently the tracking algorithm should again yield two 
trajectories. When two zeros merge to one, we keep 
record of the merged peak value. Whenever the peak 
maximum value drops in half, the algorithm should go to 
the correction technique to find the exact roots. 
• Convergence Monitor 

A simple way to test the divergence of the Newton's 
Method    is     given     in     {8J.     The     inequality, 

l/(* i>\f(xk~ln, means that the root finding method 
has lost convergence. If this occurs, we need to apply the 
correction technique. 

C. The Basic Ahorithm 

The complete version of the proposed zero-tracking 
algorithm is summarized as follows 
1) At time n, perform the zero-tracking correction tech- 

nique. Find the IFs and the corresponding roots z^f. 

2) Calculate the new polynomial coefficients a0 alr...,ai 

at time n+1 using equation (4). 

3) Calculate./^ using (5), and /(z^) by 

/(zM) = <»,+2a27llt|. + 3a3ZM
2
+...+Lat^M

t-, (13) 

5) Calculate/rz),+/,i), and put z^, = z>+|, 

6) v |/<*. ♦ i, ,)| > \fK $ or Pfz^OKthreshold, apply the 

correction technique in step 1). 
9) If Ztf is equal to any other IF root, keep record of the 

maximum value of the merged peak until it drops in 
half, then apply the correction technique in step 1). 

10) If J/(z,,+,)| <accuracy threshold, go to the next time 

sample, and apply step 2), otherwise go to the step 3). 
The calculation of zero-tracking in term of number 

of multiplication is approximately 4L, where I is the 
number of roots. The time efficiency is linear. 

4. SIMULATIONS 

First, consider the case of .single tone frequency bopping 
signal with SNR=20dB. We use Choi-Williams kernel 
applied to the LAF with o=l and L=14. The result is 
shown in Fig.l. The zero-tracking correction technique 
was used once for each hop. 

Second, we use a single tone signal with a fast sinu- 
soidal changing IF and high noise level, SNR=5dB. 
Again, Choi-Williams kernel with c=l and 14 roots is 
applied. The IF tracking is shown in Fig.2. In this exam- 
ple, the correction technique was used only once at the 
beginning of tracking. 

Next, two component IFs are tested. The signal con- 
sists of two crossing chirps with SNR=20dB. To provide 
good spectral resolution, we use a polynomial of 30 roots 
and Choi-Williams kernel with <x=10. The two chirps are 
nicely tracked in Fig.3. The correction technique was 
only applied twice, at the initial phase and at the split 
point past Ihe chirp crossing region. 

CONCLUSION 

Two zero-tracking algorithms have been introduced 
for instantaneous frequency estimation. Both algorithms 
operate on the local autocorrelation function of the time- 
frequency distribution and construct a polynomial whose 
zeros correspond to the IFs of the multicomponent signal. 
The zero trajectories of this polynomial are either pro- 
vided by using the formula relating, to the first order 
approximation, the changes in the polynomial coeffi- 
cients and roots, or by applying Newton's method for 
zero-finding. 

Unlike TFDs, providing the IFs via the zero-trajecto- 
ries of a polynomial whose coefficients are generated 
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from the LAF does not require the application of either 
FFT or peak finding techniques every time sample. 

Computer simulations illustrating the performance 
of the zero-tracking algorithm using Newton's method 
under evolutionary and abrupt frequency changes are pre- 
sented. AH simulations demonstrate the fast tracking and 
convergence properties of the proposed algorithm when 
appb'ed to LAFs of reduced interference distributions. 
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Fig.2 Sinusoidal IF. 
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Fig.3 Two CrossmgChirps. 
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ABSTRACT 

Interference excision in spread spectrum communica- 
tion systems using time-frequency distributions (TFD) 
has been recently introduced to mitigate nonstation- 
ary interferers. The jammer instantaneous frequency 
(IF) is estimated and used to construct a time-varying 
notch filter which eliminates the jammer instantaneous 
energy. In this paper, we present the effects of the 
bias in the IF estimates on the receiver performance. 
Both cases of fixed and random frequency jamming sig- 
nals are considered. It is shown that the bit error rate 
(BER) increases with the bias and is dependent on the 
jammer IF. 

Input data 

—r->^ 

Excision Filter Filter output 

Correlator 

•        I 

TFD 
IF Estimate 3 

Fig. 1 block diagram of the interference excision 

1. INTRODUCTION 

The notion of applying time-frequency distributions to 
mitigate nonstationary interference in spread spectrum 
communications was introduced in [1] and has been 
successfully used to improve the receiver performance 
in time-varying jamming environment [2][3][4][5]. 

The TFD excision approach is based on estimat- 
ing the instantaneous frequency of frequency modu- 
lated jammers using fixed kernels, such as Wigner-Ville 
and Choi-Williams [6], or data-dependent kernels using 
weighted least squares methods [7]. This information 
is then used to control the position of the notch of a 
short-length FIR filter, which excises the jammer en- 
ergy over its instantaneous concentration. 

Fig.l shows the block diagram depicting the out- 
lines of this approach. The excision notch filter is 
preferably of three or five coefficients, as longer filters 
become inappropriate for rapidly time-varying interfer- 
ers. A bias in the estimation of the instantaneous fre- 
quency will however allow some of the jammer energy 
to escape to the filter output, causing an increase in 
the probability of bit errors. This bias may be the re- 
sult of poor frequency resolution associated with using 

insufficient number of DFT samples in implementing 
the TFD or due to the low jammer-to-signal and noise 
ratio. 

In this paper, we present analysis which shows the 
effects of the imperfections of the TFDs on the receiver 
performance. The instantaneous bias is taken as a zero- 
mean white noise random process. Expressions of the 
filter output and the receiver SNR due to the jammer 
are derived for both three coefficient and five coefficient 
excision filters. 

2. PERTURBATION ANALYSIS FOR A 
FIXED FREQUENCY JAMMER SIGNAL 

2.1.  Three-Coefficient Excision Filter 

We consider the case of a sinusoidal jammer J(n) with 
fixed frequency u0, amplitude A and phase <f> 

J(n) = A sin(w0n + <p) (]) 

Let Au>(n) denote the bias in the instantaneous fre- 
quency estimate at time n whose variance is o* . This 
b)as is independent of both the jammer and the PN 
sequence. The impulse response of the excision notch 

73 



fyuHMu» vy **»v »s»;y*< 

filter at the n-th sample is therefore given by 

h(n) = ($(n + j)-2cos[u0+Au(n)]<5(n)+<$(n-l) (2) 

The output of the filter due to the jammer is 

Je{n)   =   J(n)*h(n) = 2Asin(wan + 4>) 

{cos w0 - cos[u>o»i + Aw(n)]}.      (3) 

Below, we present two types of approximations to equa- 
tion (3), both apply Taylor series expansion to the cos- 
inusoidal term in (2). In each case, we derive expres- 
sions for the mean and the variance of the correlator 
output. First, consider the first order Taylor expansion 

/(x) = /(«,) + /'(r)|I=Ie(x - s0) + o(x - to).   (4) 

Accordingly, 

cos[wo + Aw(n)] = cos wo - Au(n) sinwo + o(Aw(n)), 
(5) 

and (3) becomes 

y„(n) « 2i4sin(woi + ^)Aü>(n)sinwo (6) 

For the second order Taylor expansion, 

/(*)    =   /(xo) + /'(x)|,=,.(r-xo) + /"(x) 

(x-«o)2 + ot(*-xo)1 (7) 

In this case, 

cos    [wo + Aui(n)] = cos w0 — Au»(n) sin wo 

+^|I=x0(x-xo)2 + o[(x-xo)2]   (8) 

Using the expansion (8), equation (3) can be approxi- 
mated by 

Jo[n) fa 2A s)n(w0n + <p)[Au[n)sin u>o + A2w(n) —-—] 

(9) 
The correlator output due to the jammer is 

L 

n=l 

Since jF[p(n)] = 0 , then E[Uj] = 0. The mean square 
value is given by 

n=l*=l 

Since Au(n) and p(n) are independent, then 

Using the first order approximation (5), 

E   [Uf] w ]T £[4i42sinaw0sin2(won + tf)A2u>(n)] 
n=l 

^2-2      2^7     V^ cos(2tjpn + 2^)1    ,.,. =   AA'sivfuoaW-L-}^ '-]   (13) 
n=l 

For large value of L, the second term in the brackets in 
(13) can be ignored. Accordingly, 

E[UJ}s*UA7sin7v0(rl (14) 

E[Uj] = E{£jHn)) (12) 
n=l 

From (14) and the zero mean property, the variance of 
correlator output due to the jammer can be expressed 
as 

a\ = E[Uf] - E[Uj)2 «ILA7 sin2 u0a\        (15) 

which reaches a maximum value at UQ = n/2. Simi- 
larily, it can be shown that using the second order ap- 
proximation (9), the variance of the correlator output 
b 2 

a* » 2I,42[sin2u,o + Z*l 2^]*!        (16) 
4 

which, for low tr2^, also reaches its maximum in the 
vicinity of w0 = ff/2. 

2.2.  Five-Coefficient Excision Filter 

We assume the same jammer characteristics and bias 
conditions as in the three-coefficient filter case. In the 
underlying case, the filter impulse response has five 
nonzero coefficients obtained by convolving the filter 
response (2) with itself and is given by 

h(n)    =    tf(n+2)-4cos[u;o + Aw(n)][<5(n-H) 

+*(n-l)] + {2 + 4cos2[u>o 
+Aü/(n)]}(S(n) + (J(n-2) (17) 

where the IF estimate bias is defined as before. It can 
be readily shown that the five coefficient excision filter 
output is 

J„(n)   =    J(n) *h(n) = 4J4sin(u>on + ^) 

{cosb>o — cos[woJi + Au>(n)]}2.   (18) 

Using the 1st order approximation (5), we obtain 

Je(n) «4j4sin(u>on-f ^)[Au>(n)sinu>0]2 (19) 

While the second order approximation (8) yields 

J0{n) « 4i4sin(a)0n+^)[Aw(n)sinwo-fA
2w(n)——-]2 

(20) 
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Similar to Section 2.1, E[Uj] = 0. The mean square 
value is 

W?} = £(E E J.(»)-M*MnM*)]     (2i) 

«'r-r 

n=l 

Using approximation (19) 

i 
£   [!/?]» E £[16j42sinH "o sin2(u>0n + 4)A4w(n)] 

n=l 

..o >i2 • *      «11 T     V* cos(2a>pn + 2fl,   .   . 
=   4SÄ1 so? uofflfcL - 2^, § '   *   ' 

n=l 

for I» 1, 

£[[//] « ULA7 sin* wo4 (24) 

So, the variance of correlator output is 

<T2«24Lyl2sm«uo<4 (25) 

which reaches a maximum value at uio = f/2. It can 
be shown that using the 2nd order approximation (20), 
the variance of correlator output is 

,      .               , cos2 u>n sin u>o 
a\   «   24Ly}2Isin4u0 + 15<ri ^ + 

4 cos4u0, 4 Zoal—j—}<rl (26) 

As in the case of three coefficient filter, the behavior 
of the correlator output variance in (25) and (26) de- 
pends on the jammer frequency and becomes small at 
both low and high IF. Fig.2 shows the bit error rates 
versus the instantaneous jamming frequency with two 
different values of the frequency bias variance at the 
JSR of 50dB. In both cases, the highest probability of 
eTror occurs at and around jr/2. 

2.3.  Overall SNR 

Using the results in [1)[3] and the 1st and 2nd order 
approximations (4) and (7), the receiver SNR for L » 
1 can be respectively written as 

SNRi,, = 

and 

2Lcos2ü>o 
T-rj-  (27) 

2 + ff2(l + 2cos2u>0) + A7a\ sin w0 

2LCOS2ü>O 
SNR7n<1 =    2   ,   , 

^nO + ^O 
(28) 

~Pt-~A-~4~-i—\—1—t—i—f-*- -•r-t~7T—i—»—*—1—f—K~ rr 

tittittitiij;i;;;rim;tttitjmmii*it^i.*m 

.R_.W*y.tWI!»4 -4- j1 .*H.I...I j f—***M -...—■- 
♦   <«>1M  : t i • • • t : 

Fig.2 BER versus IF (0-x) with different o\ 

where 
^0 = 2 + «rJ(l + 2cosJu0) (29) 

^ = ^4(^^0 + 3^^^)        (30) 

The corresponding expressions of (27) and (28) for the 
five coefficient excision filter are given by 

2L(l + 2cos2u;o) 
bHH\,t — ~2—r~2 (31) 

where 

o-7, = 2+32cos2u)0+ff2+16ff2cos2w0+2o-2(l+cos2ü;o)2 

(32) 
<r2, = 124V« sin1 wo (33) 

and ,    ,, 
2L(l + 2cos2u>o)2 

SNR7ni=  2   ,2 (34) 

where 

<r2, = 2+32 cos2 u)0+tr2+16<T2 cos2 w0+2a2(l+cos2w0)
2 

(35) 

,                 A A. . A         „  i cos2 wo sin2 u>o , 
<r22   =   12A'Vi[sin',u>o-l-15<r2

i °- + 

A cos*wo    4 35<r£——\o\ (36) 

3. PERTURBATION ANALYSIS FOR A 
RANDOM FREQUENCY JAMMER SIGNAL 

In this case, we consider a sinusoidal jammer with ran- 
dom frequency uniformly distributed over [0, *]. But 
we assume that the jammer frequency is constant within 
the filter extent. So the correlator outputs of both the 
three-coefficient and five-coefficient filter are still the 
same as in Section 2. 

The receiver SNR for the random frequency jam- 
mer can be derived using the same assumptions and 
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procedure followed in Section 2. Detailed analysis can 
be found in [8]. It can be readily shown that for three 
coefficient filter, SNRilt = SNR7ni = 0, and for five 
coefficient filter, 

SNRut * 22/16 +36/16ff2 + 9/16v42^ 

L 
SNR2nd K ■ 

^3 + ^3 

where 
<7*3 = 22/16 + 36/16<r2 

<& = V/16A7ei(tt/2ol + 315/16(4) 

4. SIMULATIONS 

(37) 

(38) 

(39) 

(40) 

Fig.3 compares the bit error rates in the case of sinu- 
soidal jammingwith different fixed normalized frequen- 
cies using 128 chips/bit for the five-coefficient excision 
filter. The IF bias variance is JT/50. It is clear that the 
BER curve at IF = 0.25(2*) gives the poorest perfor- 
mance, consistent with the analytical results given in 
Section 2. 

Fig.4 compares the bit error rates in the same case 
as in Fig.3, but under a fixed IF bias of JT/100. 
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Fig.3 BER for random IF bias 

5.  CONCLUSIONS 

In this paper, we have presented analysis of the effect of 
bias in the IF estimation on a TFD based spread spec- 
trum receiver. As the IF defines a notch filter, which 
acts as a preprocessing interference excision system, a 
bias in the IF will prevent a total removal of the in- 
stantaneous jammer energy arid as such, increases the 
probability of bit error. 
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Fig.4 BER for fixed IF bias 
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Abstract 

This paper introduces a new approach for interference rejection in direct sequence spread spectrum 

communication systems based on blind source separation techniques. These techniques strive to 

separate the interference from the desired signal and as such produce the spread spectrum signal 

with reduced jammer contamination. The proposed approach is robust under multipath and array 

imperfections. The paper presents the performance analysis and evaluation of the spread spectrum 

receiver incorporating the blind source separator. Closed form expressions of the receiver SNR using 

the proposed preprocessing scheme are derived. A numerical example, including the bit error rates, 

is provided to illustrate the effectiveness of the blind source separation-based interference mitigation 

approach. 

Key words    : Interference mitigation, Spread spectrum communications, Blind source separation, 

Performance analysis. 

I.    Introduction 

One of the most important applications of direct sequence (DS) spread spectrum (DS/SS) communi- 

cations is that of interference mitigation. A DS/SS system is defined as one in which the transmitted 

signal is spread over a bandwidth much wider than the minimum bandwidth necessary to transmit 

the information [1], by means of a code independent of the data. The availability of this code at the. 

receiver enables despreading and recovery of data, while spreading and suppression of interference. 

The processing gain of an DS/SS system, generally defined as the ratio between the transmission and 

data bandwidths, provides the system with a high degree of interference suppression.   In fact, any 

Dr. Moeness Amin's work is supported by Rome Lab, NY, contract # F30602-96-C-0077. 

78 



form 
CO 

«(*)=   £  hmk{t-kT), (2) 
fc=-oo 

where mk(t) = J2?=1c$p{t -{I- 1)TC) with T"1 the data (bit) rate, and T"1 the chip rate. The 

integer L = T/Tc is the number of chips per bit (SS processing gain). {&*} and {<^}i=i,...^ represent 

the k-th bit data sequence and the corresponding chip sequence, and p(t) is the chip pulse. The chip 

sequence (the PN spreading code) is a pseudo-random signal which is known by both the transmitter 

and the receiver. The matrix A, which in general corresponds to the steering matrix, is assumed to 

be full column rank, but otherwise is unknown in structure. This relaxation is important to handle 

interference multipath. 

III.    A New Interference Mitigation Design 

The block diagram shown in Fig.l illustrates the proposed spread spectrum communication system. 

The standard spread spectrum demodulation is augmented by a preprocessor, which consists of a 

separator followed by a selector. The separator acts on separating the interference from the signal by 

utilizing the spatial diversity provided by the multi-sensor array. This separation can be performed 

only up to a permutation. Hence, a selection device is needed to label the separated waveforms as 

signal and jammer. The demodulation process recovers the original data by despreading the selected 

(desired) signal, while spreading the background noise and any interference component which might 

have not been separated from the signal. In the following, we describe each processing step. 

Separation The separation of the signal from the interference is achieved by using blind source 

separation techniques. These techniques strive to recover the source vector y (t) from the array output 

x(t) without the knowledge of matrix A. The benefit of such a 'blind' processing is that the separation 

is essentially unaffected by errors in the propagation model or in array calibration. Source separation 

techniques are based on the assumption of statistical independence of the source signals. 

Various algorithms have been proposed for the blind source separation [5, 6]. In this paper, we 

only focus on the so called SOBI (Second Order Blind Identification) algorithm [7]. This algorithm is 

based on the simultaneous diagonalization of a combined set of spatio-temporal correlation matrices 

of the received signals (for more details see reference [7]). 

It is well established that there is two inherent ambiguities in the blind source separation 

problem, irrespective of the employed technique. First, there is no direct or indirect way of knowing 
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the original labeling of the sources, hence any permutation of the estimated sources is also a satisfactory 

solution. The second ambiguity is that it is impossible to uniquely identify the source signals. This is 

because the exchange of a fixed scalar factor between a source signal and the corresponding column 

of the mixture matrix A does not affect the observations. Hence, the blind source separation is a 

technique for recovering the source signals up to a fixed permutation and complex scalar multiplication. 

Selection Because of the inherent ambiguity stated above, a selector at the output of the separator 

is necessary to identify the desired signal for postprocessing. For this purpose, several strategies can 

be considered. The selection can be based on the signature of the desired signal which may be known 

by the receiver. As such, the problem of the selection becomes a pure problem of signal classification 

[8]. Note that the classical adaptive array interference nulling algorithm also requires some a priori 

information on the desired signal before processing. 

Spread Spectrum Demodulation This last step consists of despreading the selected signal for 

recovering the original data bit sequence {&*}. This is accomplished by the correlation of the received 

signal with a synchronized replica of the spreading signal {cf};=i,...,L used to spread the information. 

While the correlator despreads the desired signal, it spreads any interference components which might 

have escaped to the desired signal in the separation process. 

IV.    Analysis 

Throughout the following analysis, the additive noise is assumed to be a zero mean white Gaussian 

complex circular process with variance <r*. The desired signal s{t) and the jammer j(t) are treated 

as if they have unit power. The actual dynamic range of both waveforms are accounted for by the 

magnitude of the corresponding columns of the steering matrix A. Hence, matrix A has the following 

structure: 

A = 
ase'B'    Ojtie> 

(3) 

where a] and a] represent the powers of the signal s{t) and the jammer j(t), respectively, and 0S and 

9j are their corresponding directions-of-arrival. 

Further, in the analysis herein, we assume the transmission of the information bit "1" , i.e., 

s{n) = c{n), and a narrowband jammer of the form: j{n) = eium+*, where u is the jammer frequency 

and the phase <f> is a uniform random variable. The receiver SNR is defined as the ratio of the square 
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of the mean to the variance of the correlator output U [4], 

««-us; 
where U = Yln=i r(n)c(n)*. In the above equation, r(n) is the sampled version of the correlator input, 

c(n) is a zero-mean complex circular i.i.d. chip sequence such that |c(n)|2=l and L is the length of 

the chip sequence per information bit. Note that the decision of receiving 1 or -1 is based on the sign 

of the real part of U [9]. 

Pre-processor Disabled When no DS/SS signal-interference separation is performed, the input to 

the correlator (the received signal) is the average of the sensor outputs, 

r(n) = |[x,(n) + »2(n)] (5) 

In this case, the correlator output is given by 

tf = 5E[*i(n) + *2(»)M»)' (6) 

The uncorrelation between the zero mean PN sequence and both the jammer and noise sequences, 

along with the properties of the white noise process, is used below to obtain the mean and variance 

expressions of the correlator output U, 

E[U)   =   i«Ml + e*')£ (7) 

Var[U]   =   |k?(l+ €»»(«,-))+^] (8) 

According, the correlator SNR is 

qNff (l + cos(e,))c*3L    _ (1 +cos (9S))L . 
01 n°fI (1 + cos (8j))*l + al (1 + cos {OtfJSR + ^R 

where JSR and SNR are the jammer-to-signal and signal-to-noise ratios, respectively. Since (5) 

amounts to a beamformer with unit coefficients, then, for a given jammer position, the correlator 

SNR reaches a maximum value for a broadside desired signal arrival. Adversely, SNR0JJ reaches a 

minimum value for a given DOA of the desired signal when the jammer DOA is perpendicular to the 

array. The correlator SNR using only one array sensor and without applying any auxiliary interference 

excision scheme is 

SNX~--J£?= JSR
L,    i (10) 

Therefore, the SNR improvement factor achieved via the use of 2-sensor array is the array gain, 

SNRojf = (l + cos(ea))(JSR+swn) ln) Vi     SNRme       (1 + cos {ej))JSR+ ^ V   ^ 
whose maximum value is v\ « 2, i.e., 3 dB improvement. 
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Pre-processor Enabled    When the SS signal/interference separation is performed, the correlator 

input is the selected signal 

r(n) = 5(n)   =   [A-'xfn)], 

=   [Ä-'Ajnstn) + [Ä-'AWCn) + {[A^A],,^-1],, + [A"1 A]l3[A-%} 

«'i(n) + {[Ä-,A]ll[A-1]12 + [Ä-,A]12[A-1]22}tC2(n) (12) 

The mixing matrix A is estimated by the SOBI algorithm using K correlation matrices. In the 

following analysis, we make use of the performance study of SOBI algorithm as derived in [7]. Hence, 

at the first order approximation, we have: 

[A-'A],,   «   1 (13) 

[Ä-'AJ«   «   ^     £     j§[A-^R(A:)A-^]12 (14) 

where p = \pu---,pK], pk = E\j{n)j{n- *)•], for k = l,---,K, and SR(k) = R(&) - R(jfc) with 

R(*) = T En=i x(n)x(7* - *)* and R(fc) = E[x(n)x(n - *)*] = AA",   for k # 0. 

Incorporating the three different components of the array outputs in equation (14), it can be 

readily shown that 

[A~lA]l2=il     £      ]§EM + iVi(n)][;'(n-i) + iV2(n-i)r (15) 
\k\<K,kjiO >Pl    n=] 

where 7V,(n) = -—,1-—^^) _ W2{n)] and ^(n) = g.(e<,,
1_e,<.)[^u>1(n) - w2(n)]. 

From (12), (13) and (15), the received signal is 

1 P*    L 

~(n) = [s(n) + N1{n)}-—     £      ^ E[5(m)+^1(m)]L7(m-*)+7V2(m-Ar)r[7(n)+^2(n)] (16) 
|t|<X,*#0 

It is appropriate to partition U into two components, one is interference-free and the other is interference- 

dependent, which becomes zero when the jammer is absent. That is, 

L 

v = I>(«M"r = tfi+tf2, (I?) 
n=\ 

L 

Ui  =  E^W + ^WM")* (is) 
n=] 

-1 p"      L      L 

U2    =    2L      12     ]^E Etc<m) + JV>(ra)]Wm - *) + ^(m - »»'W") + ^(n)M")'       (19) 
\k\<K,k*0'yl   n=lm=l 
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It can then be shown that the mean and variance of the correlator output U are given by , 

E[U]   =   L-l (20) 

Var[V)   =   70 + 71^+72^+73^, (21) 

7o   =   l-\ (22) 

71 v+$*-i+±»U',**i2-m+* <r?(l - cos (9, -ej)Y      <rjv 2K'    LK 2er? 

2K}       L*   J 

 1 .J_     flf       J_.    _1._1_     o).        1 
72 ~    <7l(l-cos(^-^))2l2Ä- + «T2(  +2K) + L{2K + try      2K 

(Z + cos{e.-93)) ^ ,K + 1     ^ J_ 
+ fa »-V{-4r + 7l{K + 1){1 + 4K)}] 

 1    1  g| 2     /f + K 
73 "    ^(l-cos^,-^))3^*^1      L +   2L2 " 

From (20) and (21), the correlator output signal-to-noise ratio is 

SNR™ = ; [Lr1)2
4 , i- (23) 

7o + 7i °l + 72<7i + 73< 

It is noteworthy that the above analysis hold as well for coherent arrivals. In this case, the vector 

[oj Oje3 >y in (3) represents the generalized steering vector (spatial signature) associated to the 

jammer and all of its multipath. 

A.    Remarks 

In the case of a noise free channel, equations (9) and (23) become, 

_(L-1)* _(l + coS(g,)K2L 
—^-'   SNR°" ~   (1+COBWK SNRm = ^^i-,   SNRoJf = ^Y"i ,^\ % (24) 

According to (24), SNRo„ is independent of the array geometry, the jammer power, and the number 

of correlation matrices used in the SOBI algorithm. This invariance property is not satisfied when 

the pre-processor is disabled, as shown by SNR0JJ. Note from (23) that for small jammer power, 

the detection becomes sensitive to noise through 71, 72 and 73. However, as the jammer power a*- 

increases, the SNRm increases, leading to conclude that the higher the jammer power the better the 

detection. For L » 1 and high SNR, the receiver SNR improvement factor using a two-sensor array 

and SOBI over one-array element is 
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whereas the receiver SNR improvement factor with/without SOBI in a two-element array is 

SNRm        (l + cos^)) (   . 

It is clear that v2 = ^3 for 0, = 0j, as expected. In figure 2, we plot expressions (23) and (9) versus 

the number of chips/bit, for 0, = 0°, 0j = 9° and K=4. 

V. Numerical Example 

Consider a uniform linear array of 2 sensors separated by half a wavelength. The desired signal is a 

BPSK arriving at 0O = 0°. The jammer is composed of a chirp signal whose frequencies are wi = O.IJT 

and u2 = 0.67T. The direct path of the jammer arrives at 0j = 2° whereas its multipath arrive at 

02 = 10° and 03 = -10°, respectively. The noise used is zero-mean white Gaussian process. The 

first four lags spatio-temporal correlation matrices are considered in the SOBI algorithm. Figure 3 

presents the Bit Error Rate (BER) in dB versus JSR for 0 dB SNR and 8 chips/bit, 16 chips/bit, 32 

chips/bit and 64 chips/bit. For 32 chips/bit and 64 chips/bit, the proposed method offers no error 

over 106 runs for JSR up to 90 dB. The BER is remarkably reduced under the proposed method. 

VI. Conclusions 

In this paper, we have introduced a new jammer mitigation scheme for spread spectrum communica- 

tions. Blind source separation techniques are applied to increase the rejection capability of the direct 

sequence SS communication systems. The main motivation behind the proposed approach is to further 

immune the DS/SS system against strong interference and its multipath. The later is most appro- 

priately handled by blind source separation methods, which do not lead to reduced array aperture, 

as in the case of spatial averaging methods. With the inclusion of blind source separation methods, 

the overall DS/SS receiver consists of a signal separator, selector, despreader followed by a detector. 

Closed form expressions of the receiver signal-to-noise ratios have been derived. BER curves were 

provided for multipath and coherent signal environment. These curves clearly show the significant 

reduction in bit error rates when employing blind source separations. 
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A Two-Sensor Array Blind Beamformer for Direct 
Sequence Spread Spectrum Communications 

Adel Belouchrani, Member, IEEE, and Moeness G. Amin, Senior Member, IEEE 

Abstract—In this paper, we present an efficient blind beam- 
former dedicated to the problem of interference mitigation in 
direct sequence spread spectrum (DSSS) communication Sys- 
tems using a two sensor array. A closed-form solution for the 
blind identification of the communication channel is derired 
bj exploiting the temporal properties of the desired signal and 
the interference. The optimal beamformer is deriTed from the 
maximization of the signal-to-interference and noise ratio (SINR) 
at the output of the receiver in terms of the blindly estimated 
channel coefficients. Three structures of the DSSS receiver arc 
presented. One structure consists of the blind beamformer fol- 
lowed by the spread spectrum demodulator. The other two 
structures consist of the spread spectrum demodulator followed 
by the blind beamformer. The performance of these structures is 
discussed in terms of the achieved SINR and the computational 
cost Simulation results are provided to illustrate the effectiveness 
of the proposed blind beamformers in interference excision. 

Index Terms—Author, please supply index terms. E-mail key- 
words@ieee.org for info. 

I. INTRODUCTION 

THE RECENT developments of spread spectrum com- 
munications [1], [2] and digital beamforming [3], (4] 

provides a formidable set of technologies for jammer resis- 
tance systems. These technologies are compatible arid often 
used in the same system [5], [6]. The integration of these two 
technologies can be achieved by cascading their corresponding 
processing techniques, that is, the multidimensional problem 
can be first translated into a single dimension problem via 
beamforming, where the sensor array outputs are weighted 
and added to attenuate a strong jammer signal received by 
the multisensor antenna array. Spread spectrum techniques [7] 
may then be employed to neutralize large numbers of weak 
jammers that may not be totally eliminated by the spatial 
filtering implemented by the beamformer. A different order of 
cascade is to first apply the spread spectrum techniques at the 
output of each sensor followed by spatial filtering. This paper 
investigates the performance of these two approaches in terms 
of both the computational cost and the achieved receiver SINR. 
For this purpose, new beamformers dedicated to the problem of 
a single jammer mitigation in DSSS communications systems 

Manuscript received August 7, 1997; revised February S, 1999. This work 
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and by me Office of Nava] Research under Grant N000I4-98-1-O176. The 
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using a two-sensor array according to the two aforementioned 
approaches are proposed. 

Several beamforming approaches have been proposed in the 
literature. Unfortunately, these methods may have significant 
drawbacks in practice. Methods requiring direction-finding 
and array calibration often fail in coherent environments 
and for unknown array manifolds. Herein, we consider blind 
beamforming techniques that are robust under multipath and 
array imperfections [8]. 

The main contribution of this paper is the derivation of a 
closed-form solution for the blind identification of the commu- 
nication channel by exploiting the whiteness property of the 
desired signal and the coherence property of the interference. 
The two sensor optimum beamformer weights are derived from 
the maximization of the SINR at the output of the receiver. 
The DSSS receiver is implemented in two different structures. 
One structure consists of the blind beamformer followed 
by the spread spectrum demodulator. In the other structure, 
the cascading order is reversed where the spread spectrum 
demodulators are applied at both sensors, and the results are 
then processed by a blind beamformer. The performance of 
the each structure is discussed in terms of the achieved SINR 
and the computational cost. 

The paper is organized as follows. In Section II, the system 
model is described, and the relevant assumptions are stated. 
A closed-form expression of the estimated communication 
channel is derived in Section III. 

II. PROBLEM FORMULATION 

A. Data Model 

The DSSS communication system under consideration em- 
ploys binary phase-shift-keying (BPSK) for both chip and data 
modulation. An array of two sensors receiving the signals from 
two sources [an i j.d. desired signal and a temporally correlated 
jammer (Wl)]1 is considered. The array output vector x(f) 
is two-dimensional (2-D) and is expressed by the low-rank 
model [8] 

x(f) = Hy(i) + „(f),        y(<) = [,(,) j{t))T       (1) 

where y(i) is the signal vector whose entries are s(t) and 
j(t), which represent the desired signal and the jammer 
signal, respectively. The superscript T denotes the transpose 

'In some military applications, this assumption is often verified when 
the spread spectrum signal is white in die baseband and the jammers are 
narrowband. 

J053-51T7X/99J10.00 © 1999 IEEE 
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the signal direct path and all its multipalhs. The desired signal, 
the jammer signal, and the noise components are assumed 
uncorrelated 71*3). In the baseband, the desired signal a(t) has 
the form 

*(*)=   J2   hmk(t-kT) 
Jfc=-co 

mk{t)=
y£c!p(t-(l-l)Te). 

(2) 

(3) 
i=i 

In (2) and (3), T_1 is the data (bit) rate, and T'1 is the chip 
rate. The integer L = T/Tc is the number of chips per bit (SS 
processing gain). {6*} and {(^[}I=I,...,L represent the kth bit 
data sequence, and the corresponding chip sequence and p(t) 
is the chip pulse. The chip sequence is a pseudorandom signal 
that is known to both the transmitter and the receiver. Perfect 
synchronization between the transmitter and the receiver chip 
sequences is assumed. 

The multiplicative nature of the low-rank model (1) is 
valid for small delay spread, i.e., when the relative time 
delays for different propagation paths are small compared 
with the inverse of the bandwidth of each signal arrival. This 
assumption is often satisfied under local scattering conditions. 
Moreover, model (1) assumes the signal complex envelop re- 
ceived by each sensor is identical except for phase and possibly 
amplitude differences that depend on path angle-of-arrival. 
This is typically the case when the inverse signal bandwidth 
is large compared with the travel lime across the array. 

B. Blind Identification 

In the blind context, a full identification of the channel 
matrix H is impossible because the exchange of a fixed scalar 
factor between a given signal and its corresponding channel 
vector does not affect the observations 

(4) x(t) = Hy(r) + n(() = T— °*y*(0 + "(0 

where a,- is an arbitrary complex factor. It is assumed without 
any loss of generality that 

W4) the waveforms s(t) and j(t) are treated as if they 
have unit variance so that their dynamic range is 
accounted for by the magnitude of the corresponding 
channel vecto; 

7f5) the first entries of the channel vectors h*, k = 1, 2 
are real and positive, i.e., 

A*i.= AIi, hkl>0 k=l,2 (5) 

where the superscript * denotes the complex conjugate op- 
erator. These conventions are shown to be convenient in the 
sequel. If A« = 0, k = 1, 2, then the first sensor neither 
receives the jammer or the desired signal. In this case, the 
spatial dimension provided by the two-sensor array will not 
improve jammer excision. 

C. Receiver Design 

The block diagrams shown in Figs. 1-3 illustrate the three 
structures of ihe proposed spread spectrum communication 

\Anj70f» 

Fig. 1.   Jammer mitigation system: Structure I. 
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Fig. 2.   Jammer mitigation system: Structure II. 

receiver. In Fig. I, structure I describes a receiver that consists 
of the standard spread spectrum demodulation preceded by a 
blind beamformer. The task of the beamformer is to fully or 
partially remove the jammer with minimum distortion to the 
desired signal. This is achieved by utilizing the spatial diversity 
provided by the two-sensor array as well as the difference in 
the temporal characteristics of the two signal arrivals. The de- 
modulation process recovers the original data by despreading 
the separated desired signal while spreading the background 
noise and, in part, suppressing any jammer component that 
might have escaped to the beamforming output. As depicted 
in Fig. 2 and 3, structures II and /// of Ihe receiver consist 
of the spread'spectrum demodulations applied at each sensor 
followed by a blind beamformer. The difference between these 
structures is in the estimation of Ihe channel coefficients. In 
structure II, the channel coefficients are estimated from the 
observed data directly before despreading, whereas in structure 
III, these coefficients are estimated from Ihe despreaded data. 

III. SECOND-ORDER CHANNEL IDENTIFICATION (SOCI) 

Consider the sampled version of the data model (/ = T„ 
where T, is Ihe sampling period) 

x(n) = Hy(u) + n(»).        *(") = [«(«) j(«)JT-      (6) 
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Hg. 3.    Jammer mitigation system: Structure 111. 

5(n)=]T„(n-/>(/)* 
1=1 

1=] 

and 

3w = £;(»-'MO*- 
»=i 

Dai 

Dm 

•where I is ibe TV x N identity matrix, x,(n), t = 1, 2 are the 
element of x(n), and R*, is defined by 

R,y = E{[x{\), ■■■, x(N)f Ml), •-•, y(N)Y).     (10) 

In the above equation, E{) is the expectation operator, and 
N is some length of the data. Expressions (7M9) are derived 
under the assumptions 7il)-Ti5), where 

L-\L   if 
if structures I and I 

structure ID. 

Let us define the operators off() and tr() by 

1 
off(M) = 

N(N -1) 

1 

£"« 
W 

fM^EM- 

(ii) 

(12) 

(13) 

where M is any square matrix of dimension NxN, and My 
are the entries of M. By applying these operators to (7M9), 
we get 

F, =off(Rf,x,) = />I,Loff(Rjj) 

FI2 =off(Rx1xJ) = A2i/>;2Ioff(Rjj) 

Tj = t^R*,*,) = A?, L2 + /»!,! + I*2 

T2 = tr(Ri2i,) = \h,2\*L2 + \h22\2L + l<r2 

Tn=\i(Rili2) = huh\2l
2 + h21h"22l 

(14) 

(15) 

(16) 

(17) 

(18) 

where | • |2 indicates the square modulus. Note that off(Ryj) 
is unknown and can be eliminated by combining (1) and (14). 
From (14H18). we obtain ihe expressions of the channel 
coefficients as 

, /l     T,T2-\TÜ 
21     ylT2 + Ti\ß\2- 

2\
2-Lc2(Ty+T2)±L*c*_ 
2Re(^T12) - L<r2{\ + \ß\2) 

h22 = h2iß* 

AI2 = - 
1       T12-h\,Lß 

y/Tt-h^L-Lc* 

(19) 

(20) 

(21) 

(22) 

In the above expressions, x(n), n(n), s(n), and j(n) are the 
sampled versions of x(t), n(t), s(t), and j(t), respectively, where ß = FJ3/FU and Re{ } denotes the real part operator. 
c(/) is a zero-mean i j.d. chip sequence, and L is the length of An estimate of the noise variance a2 is needed for a robust 
the chip sequence per information bit. Trie correlation matrices estimation of the channel coefficients. It can be obtained by 
of x(n) are given by eigendecomposition of the data covariance matrix [9] if a third 

sensor is available. Otherwise, <r2 can be estimated using only 
R^.^L'l+A^LRjj + L^I 

Rf,x, = |A,2|
2I2I+ |A22|

2
LRJJ + l*2\ 

Ri,x3 =/>ii'>,2L2I + h2ihi2LRjj 

(7)    two sensors before transmission begins, i.e., in the absence 
/g)    of the spread spectrum signal (see the Appendix). Note that 

in practice, the temporal correlation matrices of the data are 
W   replaced by their time averages. 
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It should be noted that if there is no jammer present, then 
h2\ = A22 = 0, and (19) and (20) do not cany any new 
information to estimate hn and A,2. Further, in the case that 
the jammer is an uncorrelated signal, where off(Rj:) = 0, then 
Fi = F\2 — 0, and, as such, there is no unique solution of 
the channel. In addition to reducing the jammer power, the de- 
spreading in structure II also weakens the temporal coherence 
of the jammer signal while estimating the channel coefficients. 
For high number of chips by bit (£), the despreading operation 
makes the jammer temporally white, and similar to the above 
case, the values of F\ and Fi2 in (14) and (15) are reduced 
to zero. Hence, (16X18) become insufficient to solve the 
identification problem. Whether the jammer is originally or 
made white, we have to use higher order blind identification 
techniques for blind notations [10J—[123- From " ■ discussion, 
it is expected that the asymptotic performance of the lOCI will 
be better in structures I and II than in structure ID., 

IV. DATA RECOVERY 

In this section, the objective is to determine the array weight 
beamformer w = [u>i w2] to achieve the task of data recovery. 
Several minimization and maximization criteria can be used to 
optimize the beamformer weights [13]. This includes the use 
of the reference signal, maximization of signal-to-imerference 
and noise ratio (SINR), and linearly constrained minimum 
variance of the beamformer output. We compute the optimum 
beamformer that maximizes the SINR at the receiver output 
subject to the unit norm constraint \w\7 = 1. 

A. SINR Expression 

I) Structure I: The receiver SINR is defined as the ratio of 
the square of the mean to the variance of the correlator output 
U [14]2 

where 

SINR, = \E[U]\2 

Var[{/] 

U = Y, w»x(n)c-(n) 

(23) 

(24) 

where the superscript H denotes the transpose conjugate 
operator. It is realized that U consists of three different 
uncorrelated components U,, Uj, and U„, which are the output 
of the correlator due to the desired signal, the interference, and 
the noise, respectively. That is 

U. =w"£n(n)c*(n). (28) 
71 = 1 

U = U, + Uj + u„ 

where 

n=l 
L 

U,=y*"h2J2Hn)c-(n) 

(25) 

(26) 

(27) 

"Note thai this definition is consistent herein only because the variance of 
the data bit sequence is zero over the chip length. 

Therefore 

E[U] = E[U,] + E[Uj] + E[Vn] (29) 

Var[I7] = Var[£/,] + Var[l/,] + Var[t/„]; (30) 

The mean value can be easily computed as 

E[U.] = E 

E[Vj]=E 

E[V„] = E 

w"h, £ *(n)c*(n)   = ±Lw*h,   (31) 
n=l J 

w"h2 J]i(nK(n)]=0 (32)- 
n=l J 

w»£n(n)C-(n)]=0 (33) 
n=l J 

where 
,, ■> _ f +1    if bit 1 is transmitted 

' — I -1    if bit -1 is transmitted. 

The zero values in (32) and (33) are the result of the un- 
correlation between the zero mean chip sequence and both 
the jammer and noise sequences. These properties along with 
the white noise process can be used to obtain the variance 
expressions 

Var[(/,] = 0 
Var[£/,-] = L|wwh2|

2 

Vu[Un] = L|w|V. 

Accordingly 

\E[U]f = L*\*,Hhtf 

Var[f/] = Z,(|w"h2|
2 + |w| V) 

and the correlator SINR is 
L|wwh,|2 

SINRi = 
Iw^hzP + lwlV2" 

(34) 

(35) 
(36) 

(37) 

2) Structures II and III; At the output of the beamformer, 
the SINR corresponding to structures II and 111 is given by 

SINRii=srNR)n 

w"h,|2£:[?(n)s(n)-] 
|wwh2p£[7(n)J(n)*] + Y,E\n(n)n{n)')Yr» 

(38) 

where 

x(n) = = £*<» 
l=l 

- 'M0- 

n(n) = 
I=I 

- 'M0- 

*(») = =x>- • 'MO" 
1=1 

and 
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7(») = £;(«-'MO* 
1=1 

ith 

E\s{n)s(ny] 

= E J2  *(n-0«K0**(n-«)'«(«) 
l.u=l 

EUWffW] 

= E J2 j(n-i)c(iyj(n-vyc(u) 
l,«=l                              J 

= L2 

= L 

E[ü{n)ü(ny] 

I 

= E   J2 n(n-Oc(/)*n(n-ii)*c(u) 
!,«=! 

= L<rh. 

Therefore 

SINRn = SINR», = 
I|w"h,|2 

(39) 
|w"h2|

2+M2cr2" 

3,) Comments: According to (37) and (39), the two struc- 
tures Jead to the same asymptotic SINR if the same optimal 
array weights are used. In practice, the optimal weights of 
structures I and 11 are computed form the same estimates of 
the channel coefficients. Therefore, these two structures have 
the same performance. If K denotes the sample size at the 
input of the receiver, structures I and II estimate the channel 
coefficients using K/L sample data. Note also that the input 
SINR per bil pa chip is the same for the three structures. 
Accordingly, for a same setting, the estimation error on the 
array weights of structure HI is expected to be higher than the 
corresponding error of structures I and 11. Hence, receivers of 
structures I and 11 should have better performance but higher 
numerical complexity than the receiver of structure III, as 
shown below. 

B. Optimum Array Weights 

The optimum array weight vector in the sense mentioned 
above is given by 

L|w"h,|2 

Wept = Aigmax |w"h2|
2 + M2<r2 subject to |w|2 = 1 

(40) 
The solution to the maximization problem (40) is well known 
[15] and is given by 

Q-'h, 
"•** ~ . faffed VhfQ-2r.i 

H Q = h2h? + <r2i 

A workout of (41) leads to 

(41) 

(42) 

ft.^' + Jg.A *=hnhn-huh„.     (43) 
h\\0* — «22^ 

In practice, the channel vectors hi, h2 and the noise variance 
a3 are replaced by their estimated values. 

C Summary 

Based on the previous sections, each proposed spread spec- 
trum receiver consists of the following steps: 

• Receiver of Structure I (Fig. 1) 
— estimation of channel coefficients from the array 

output i(n) using (19M22); 
— estimation of the array weight vectors w using (42); 
— recovery of the desired signal by s(n) = vrHx(n); 
— recovery of the data bit sequence 6* by the correla- 

tion of s{h) with the chip sequence {cf )isi,—,L- 

• Receiver of Structure II (Fig. 2) 

— estimation of channel coefficients from the array 
output x(n) using (19H22); 

— despreading of the sampled received data x(n) by 
the correlation with the chip sequence {cf }t=i,—,L 
to obtain x(n); 

— estimation of the array weight vectors w using (42); 
— recovery of the data bit sequence bk by wwx(n). 

• Receiver of Structure III (Fig. 3) 
— despreading of the sampled received data x(n) by 

the correlation with the chip sequence {cf }/=i,...,£ 
to obtain x(n); 

— estimation of channel coefficients from x(n) using 
09M22); 

— estimation of the array weight vectors w using (42); 
— recovery of the data bit sequence 6* by wwx(n). 

V. COMPUTATIONAL ANALYSIS 

In this section, the computational cost associated with 
each receiver of structures I—III using SOCI or JADE3 is 
determined. Table 1 summarizes the number of computations 
required for each receiver. The first column indicates the 
term to be computed. The calculations required to compute 
each of these terms is quantified in terms of the number of 
multiplications (x). A data block size consisting of K data 
samples is assumed, and N delays for the correlations are 
considered. The symbol (*) indicated that a specific term is 
required either for structure I, II, or III using SOCI or JADE. 

Rom Table 1, implementing receivers I and II using SOCI 
require, respectively, (6 + 2N)K + 22 and (4 + (2/L) -f 
2N)K ■+ 22 multiplications. For K = 512, L = 64, and N = 
4, structure II requires 108 multiplications less than structure I. 
In comparison, implementing receiver 111 using SOCI requires 
(1 + ((5 + 2N)/L)K + 22 multiplications. Therefore, the 
computations required to implement receiver I or II are sig- 
nificantly higher that those required in implementing receiver 
HJ. For k = 512, L = 64, and N = 4, the computational cost 
of receiver I is approximately a factor of 11 greater than the 
computational cost required for. receiver III. 

It can be seen from Table I that receivers I and II using 
JADE require, respectively, (11 + 18N)K + 21 + 8JV and 

'JADE is a bund identification technique described is |7) and |!3] and 
which uses higher order statistics to estimate the channel coefficients. 
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TABLE I 
COMTUEOIONJ REQUIRED FOR STRUCTURES l-m UiLtLLOu^- 

Term X SOCI JADE 

S.l S. II s.m S.I s.n 5. Ill 

X *• * + * * 

T, K # * 

T, K/L * 

r, K * * 

r, K/L + 

r„ K . * * 

T» K/L # 

ß 2NK * * 

ß 2NK/L * 

i» 10 * * * 

i» 3 # * * 

b, &h, (8+lSN)K+12+8N * * 

h,tt», (8+lSH)K/L +12+8N. * 

w 9 

a 2K * * 

I K * * 

6 2K/L * * * * 

(9-f (2/L)+18/V).K"+21+8./V multiplications. In comparison, 
receiver HI using JADE requires (1 + ((9 + 18N)/L)K -f 
21 + 8N multiplications. Again, the computations required to 
implement receiver I or II are significantly higher than those 
required in implementing receiver III. The numbers in Table 1 
also show that the computations required when using JADE 
are higher that those required when using SOCI. For K = 512 
and N = 4, the computational cost of receiver I using JADE 
is approximately a factor of 6 greater that the computational 
cost of receiver I using SOCI. 

VI. PERFORMANCE EVALUATIONS 

In this section, we consider an array of two sensors separated 
by half a wavelength. In addition to the DS/SS signal, the 
array receives a jammer through three paths (see Fig. 4). The 
desired signal is BPSK signal arriving at 0O = 0". The jammer 
is composed of a chirp signal whose frequencies are uj = O.lw 
and w2 = 0.6*. The direct path of the jammer arrives at 
6} = 2", whereas its multipaths arrive at 02 = 10° and 
03 = —10°, respectively. The noise used is zero-mean white 
complex Gaussian process. The value of N in (10) is chosen 
to be equal to 8 and 100 data bits. 

Figs. 5 and 6 display the baseband power spectral density 
over the normalized frequency of the emitted spread spectrum 
signal and the jammer, respectively. The jammer-to-signal 
noise ratio (JSR) is 30 dB and L = 128 chips/bit. Figs. 7 
and 8 present the power spectral density of the array outputs 
for a signal-to-noise ratio (SNR) of 0 dB. Fig. 9 displays the 

Hg. 4.   Scenario of the simulation. 

Amy of sensors 

Fig. 5.   Spectral density of the emitted SS signal in the baseband. 

power spectral density of the recovered signal at the output of 
the separator and before using SOCI in structure I. This figure 
clearly shows that the blind beamformer has well rejected the 
jammer. 

Next, the SINR at the output of the decorrelator is estimated 
over 100 Monte Carlo runs. Figs. 10-14 show the SINR in 
decibels when the beamformer is both enabled (either using 
SOCI of JADE according to the three structures I-JT1) and 
disabled. 

In Figs. 10 and 11, the SINR is plotted against SNR for a 
JSR of 30 and 10 dB, respectively and for both 4 chips/bit4 and 
64 chips/bit. According to Fig. 10, receivers 1 and II, which 
have the same performances, perform better than receiver III, 
as expected. Fig. 11 shows that receiver 1 and II using either 
SOCI or JADE have comparable performance. 

Fig. 12 presents the SINR versus JSR for 0 dB SNR and 64 
chips/bit. This figure shows that by using the beamformer, the 

4 The choice of 4 chips/bit in this simulation is just foe illustration. 
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Fig. 6.   Spectral density of the jammer in the baseband, pjj. g.   Spectral density of (be array output 2 in die baseband. 

Fig. 7.   Spectral density of the array output I in the baseband. 

demodulator performance becomes insensitive lo high levels of 
the JSR. Figs. 13 and 14 display the SINR versus the number 
of chips/bit for JSR of 10 and 40 dB, respectively, and for 
0 dB SNR. From Fig. 13, it is evident that for 8 chips/bit, 
the proposed receivers achieve the same performance as the 
despreader when used alone for 128 chips/bit. These figures 
support the claim that the proposed method requires small 
spreading gain and transmission bandwidth. 

Fig. 9.   Spectra] density of the recovered signal before desjasadiagjising 
SOC1 in structure 1. 

vil. CONCLUSION 

In this paper, we have proposed an efficient two-sensor blind 
beamfonher for single jammer mitigation in spread spectrum 
communication systems based on second-order statistic blind 
identification of the channel coefficients. This second order 
identification has been made possible because of i -; temporal 
properties, "the spread spectrum signal and the jammer. 

Closed-form expressions of the channel coefficients have 
been derived. Analytical expressions of the optimum beam- 
former weights have been computed form the maximization 
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U 
SfltM» 

Fig. J I.    S1NR at the correlator output in decibels versus SNR for JSR = 
10 dB and 64 chips/bit. 

of the signal-to-interference plus noise ratio at the output of 
the demodulator. Three structure designs of the mitigation 
receiver were suggested. While structure 111 presents a low 
computational cost, it is less robust than structures I and II. 
The second-order channel identification (SOCI) was compared 
with the "JADF' in both terms of computational cost and 
the achieved SINR. While SOCI has a low computational 
cost, it represents a comparable performance of JADE when 
the asymptotic conditions are reached. Because of inherent 
ambiguity related to the general blind problem [16], [17] 
solved by JADE, a selection of the desired signal signature 
and the jammer signature from the estimated signatures should 

s • 
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Fig. 10.   SINR at the correlator output in decibels versus SNR for JSR = 
30 dB and 4 chips/bit. 

Fig. 12.   SINR at the correlator output in decibels versus JSR for SNR = 
0 dB and 64 chips/bit 
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i 
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Fig. 13.    SINR at the correlator output in decibels versus chips/bit for SNR 
= 0 dB and JSR = 10 dB. " 

be performed when using JADE. Some a priori knowledge on 
the desired signal it needed. In contrast, the proposed SOCI 
does not need this extra processing since it selects implicitly 
the desired signature during the identification process. We 
conclude that receivers 1 and 11 using SOCI seem to be the 
best receiver for the mitigation of a single jammer in a two 
sensor spread spectrum communications system both in terms 
of performance and computational cost. Simulation results 
were provided for multipart and coherent signal environment. 
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STNR at the correlator output in decibels versus chips/bit for SNR 
and JSR = 40 dB. 

APPENDIX 

"With no SS signal arrival, (14M18) is reduced to 

F12 _ offlRj.i,) _ Ä; 
(44) 

(45) 

(46) 

f, = tr(Rilf))=Ä2L + Zo-2 

T"12=tr(Rilä,) = /.2/.;/>2 

where h = [hj h2]T and x = [x, x2]T, respectively, 
represent the channel vector associated with the jammer and 
the observed data prior to signal transmission. From (44)-(46), 
we obtain the expression of the background noise variance 

2 — Zl _ -^i2^12 
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Blind Source Separation Based on 
Time-Frequency Signal Representations 

Adel Belouchrani and Moeness G. Amin, Senior Member. IEEE 

Abstract—Blind source separation consists or recovering a set or 
ritnals or which only instantaneous linear mixtures are observed. 
Thus rar, this problem has been solved using statistical informa- 
tion available on the source signals. This paper introduces a new 
blind source separation approach exploiting the difference in the 
time-rrequency (*-/) signatures or the sources to be *£"*"• 
The approach is based on the diagonalization oT a combined set 
or "spatial t-f distributions." In contrasts existing techniques, 
the proposed approach allows the separation or Gaussian sources 
with identical spectral shape but with different t-f locahzat on 
properties. The effects or spreading the noise power while localiz- 
ing the source energy in the t-f domain amounts to increasing the 
robustness or the proposed approach with respect to noise and, 
hence, improved performance. Asymptotic performance analysis 
and numerical simulations are provided. 

I. INTRODUCTION 

BLIND SOURCE separation is an emerging field of funda- 
mental research with a broad range of applications. It is 

motivated by practical problems that involve several source 
si°nals and several sensors. Each sensor receives a linear 
mixture of the source signals. The problem of the blind source 
separation consists, then, of recovering the original waveforms 
of the sources without any knowledge of the mixture structure. 
This mixture is often a convolutive mixture. However, in 
this paper, our main concern is the blind identification of an 
instantaneous linear mixture, which corresponds to a linear 
memoryless channel. This choice is motivated not only by the 
fact that such a model is mathematically tractable but also 
by the applicability to various areas, including semiconductor 
manufacturing process [1J. factor analysis [2], narrowband 
signal processing (3). and image reconstruction |4]. 

CThus far, the problem of the blind source separation has 
been solved using statistical information available on the 
source signals. The first solution to the source separation 
problem was proposed almost a decade ago 15] and was based 
on the cancellation or higher order moments assuming non- 
Gaussian and i.i.d source signals. Since then, other criteria 
based on minimizations of cost functions, such as the sum of 
square fourth-order cumulants [6}-[°]. contrast functions [7], 

Manuscript received Scp.cn.ber 6. 1996: revised April 10 1998. This work 
»as supported by Rome Laboratories. Rome. NY. ander Contract F30602- 
96-C-O077. The associate editor coordinating the review of this paper ana 
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[9] or likelihood function [10], have been used by several 
researchers. Note that in the case of non-i.i.d source signals 
and even Gaussian sources, solutions based on second-order 

statistics are possible (II], [12]. 
Matsuaka et al. have shown that the problem of the separa- 

tion of nonstationary signals can be solved using second-order 
decollation only [14]. They implicitly use the nonstationanty 
of the signal via a neural net approach. In this paper, we 
propose to take advantage explicitly of the nonstationanty 
property of the signals to be separated. This is done by 
resortin» to the powerful tool of time-frequency (t-f) signal 
representations. The underlying problem can then be posed as a 
signal synthesis [15] from the t-f plane with the incorporation 
of"the spatial information provided by the multisensor array. 
With the proposed approach, no masking is required, and the 
cross terms no longer represent ambiguity in the synthesis of 

multicomponent signals. 
This paper introduces a new blind identification technique 

based on a joint diagonalization of a combined set of spatial 
t-f distributions (STFD's) that are a generalization of the 
t-f distribution to a vector signal. It is shown that under 
the linear data model the proposed STFD has the sim.lar 
structure than the data spaiial correlation matrix that we 
commonly use in array signal processing. The benefits of 
STFD over the spatial correlation matrix in a nonstationary 
sional environment is the direct exploitation of the information 
brought by the nonstationarity of the signals. Hence, the new 
approach exploits the difference between the t-f signatures 
of the sources. This method presents a number of attractive 
features. In contrast to blind source separation approaches 
usin» second-order and/or high order statistics, the proposed 
approach allows the separation of Gaussian sources with 
identical spectral shape but with different t-f localization 
properties. Moreover, the effects of spreading the ndse power 
while localizing the source energy in the t-f domain amounts 
to increasing the robustness of the proposed approach with 

respect to noise. 
The paper is organized as follows. In Section II. the problem 

of blind source separation is stated along with the relevant hy- 
pothesis. Spatial «-/distributions are introduced in Section III. 
Section IV presents the proposed t-f blind identification tech- 
nique based on the diagonalization of a combined set of spatial 
t-f distributions (TFD's). In Section V. a closed-form expres- 
sion of the asymptotic performance of the proposed method is 
derived. Numerical simulations illustrating the usefulness of 
the proposed technique are given in Section VI. 

IU5.i-5S7,\/vSSIO.OO C> I WS IEEE 
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II. PROBLEM FORMULATION 

A. Data Model 

In most practical situations, we have to process multidimen- 
sional observations of the form 

x(0 = y(0 + n(*) = As(0 + n(t) 

where x(f.) is a noisy instantaneous linear mixture of source 
signals, and n(t) is the additive noise. This model is commonly 
used in the field of narrowband array processing. In this 
context, the vector s(t) *= fo (f),..., sn (t)]T consists of the 
signals emitted by n narrowband sources, whereas the vector 
y(0 = |yj(0>---.y>n(0]r contains the array output. Both 
vectors are sampled at time t. Matrix A is the transfer function 
between the sources and the array sensors. In the following, 
this matrix is referred to as the "array matrix" or the "mixing 
matrix." 

B. Assumptions 

The source signal vector s(f) is assumed to be a nonstation- 
ary muhivariate process with 

1^ HI):R, =   lim -\   s{1 + T)s'(t) 
7"—-oo J    *     ' 

»=1 

= diaE[r1,(r)!...,r„„(r)] (2) 

where superscript * denotes the conjugate transpose of a vec- 
tor, diag[] is the diagonal matrix formed with the elements of 
its vector valued argument, and TH{T) = limT—^ ^ £,_, r 

Si(t + T)s'(t) denotes Ihe autocorrelation of s,-(t). Assumption 
HI) means that Ihe component s,-(f), 1 < t" < n are mutually 
uncorrelaied as their cross-correlations are equal to zero. 

The additive noise n(/.) is modeled as a stationary, tempo- 
rally white, zero-mean complex random process independent 
of the source signals. For simplicity, we also require n(t) to 
be spatially white, i.e.. 

(H2): £(n(t + 7>*(r)) = O76{T)1 (3) 

where S(T) is the Kronecker delta, and I denotes the identity 
matrix. 

The m x n complex matrix A is assumed to have full 
column rank but is otherwise unknown. In contrast with 
traditional parametric methods, no specific array geometry or 
sensor characteristics are assumed, i.e., the array manifold is 
unknown. 

The aim of blind source separation is to identify the mixture 
matrix and/or to recover the source signals from the array 
output x(f) without any a priori knowledge of the array 
manifold. 

C. Problem lndeterminacies 

This problem of blind source separation has two inherent 
ambiguities. First, it is not possible to know the original la- 
beling of the sources: hence, any permutation of the estimated 
sources is also a satisfactory solution. The second ambiguity is 
that it is inherently impossible to uniquely identify the source 

signals. This is because the exchange of a fixed scalar factor 
between a source signal and the corresponding column of the 
mixture matrix A does not affect the observations as is shown 
by 

(1) 
x(0 = As(t) + n(t) = 

_ ^-> a,- 
Oi 

«.»»(«) + n(0        (4) 

where o,- is an arbitrary complex factor, and a,- denotes the 
£th column of A. 

We take advantage of the second indeterminacy by treating 
the source signals as if they have unit power so that the 
dynamic range of the sources is accounted for by the mag- 
nitude of the corresponding columns of A. This normalization 
convention turns out to be convenient in the sequel; it does 
not affect the performance results presented below. Since the 
sources are assumed to be uncorrelated, we have 

R, = I so that R, ^ Jim i V y(t)y*(t) = AA* 
7*—"OO  jf        ■'   * 

»=1,T 

(5) 

where the superscript H denotes the complex conjugate trans- 
pose of a matrix. This normalization still leaves undetermined 
the ordering and the phases of the columns of A. Hence, the 
blind source separation must be understood as the identifica- 
tion of the mixing matrix and/or the recovering of the source 
signals up to a fixed permutation and some complex factors. 

III. SPATIAL TIME-FREQUENCY DISTRIBUTIONS 

The discrete-time form of the Cohen's class of TFD's, for 
signal x(t), is given by [16] 

oc oo 

DIT(tJ)=   J2     J2   4>(m,l)x(t + m + l). 
fs — so m = —oc 

xi'(I-fm-/)e-'4*" (6) 

where t and / represent the lime index and the frequency 
index, respectively. The kernel <f>(m, I) characterizes the dis- 
tribution and is a function of both the time and lag variables. 
The cross-TFD of two signals x}(t) and x2(f) is defined by 

oc oo 

x xj(t + m - l)e->4'". (7) 

Expressions (6) and (7) are now used to define the following 
data spatial t-f distribution (STFD) matrix, 

oo oo 

Dxx(f./)= 'J2    J2   4>{m,lMt + rri + l) 
l= — oc"i=—oo 

xx"(t + m-l)e--H'r/' (8) 

where P>„(f,/)fe = DXiT.(t,f), fori,j = 1 n. 
A more general definition of the STFD matrix can be given 

as 
oo oo 

Isz — oc m = —oc 

xx'(t + m-l)e-i4*" (9) 
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where © designates the Hadamard product, and [*(m, J)]y - 
^£i(m, 0 is the t-f kernel associated with the pair of the sensor 
data *j(t) and Xj(t). 

Under the linear data model of (1) and assuming noise-free 
environment, the STFD matrix takes the simple structure in 

where the superscript * denotes the Moore-Penrose pseudoui- 
verse. This whitening procedure reduces the determination of 
the mxn mixture matrix A lo that of a unitary nxn matrix U. 
The whitened data vector z(t) = Wx(l) still obeys a linear 
model 

D„(«,/) = ADM(*,/)A" (10)      z(() *' Wx(t) = W(As(0+n(*)) = Us(t)+Wn(0. (13) 

where D„(i,/) is the signal TFD matrix whose entries 
are the auto- and cross-TFD's of the sources. We note that 
Dxx(t,/) is of dimension m x m, whereas D„(t,f) is of 
n x n dimension. For narrowband array signal processing 
applications, matrix A holds the spatial information and maps 
the auto- and CTOSS-TFD'S of the sources into auto- and cross- 
TFD's of the data. 

Expression (10) is similar to that which commonly used in 
blind source separation [12] and direction-of-arrival (DOA) 
estimation problems, relating the signal correlation matrix to 
the data spatial correlation matrix. The two subspaces spanned 
by the principle eigenvectors of Dxx(t,/) and the columns 
of A are, therefore, identical. Since the off-diagonal elements 
are crossterms of D„(t,/), then this matrix is diagonal for 
each (-/ point that corresponds to a true power concentration, 
i.e., signal auto-term. In the sequel, we consider the t-f 
points ihat satisfy this property. In practice, to simplify the 
selection of autoterms, we apply a smoothing kernel <j>(m, I) 
that significantly decreases the contribution of the crossterms 
in the t-f plane. This kernel can be a member of the reduced- 
interference distribution (RID) introduced in [17], or it can 
be signal dependent, which matches the underlying signal 
characteristics ll8]-[20). 

IV. A TWO-STEP BLIND IDENTIFICATION APPROACH 

In this section, we present a new blind identification ap- 
proach based on two step processing; the first step consists of 
whitening the data in order to transform the mixing matrix A 
into a unitary matrix. The second step consits then or receiving 
this unitary matrix by joint diagonalizing a set of data-STFD 
matrices. 

A. First Step 
The first processing step consists of whitening the signal 

part y(t) of the observation. This is achieved by applying a 
whitening matrix W to y(t). i.e.. an n x m matrix satisfying 

lim i TWy(t)y-(t)W" = WR,WW 

= WAA"W" = J     (ID 

where R„ = limr— f Ef=. y(*)y'(0 is «he autocorrela- 
tion matrix of the noiseless array output. Equation (II) shows 
that if W is a whitening matrix, then WA is a n x n unitary 
matrix. It follows Ihat for any whitening matrix W. there 
exists a n x n unitary matrix U such that WA = U. As 
a consequence, matrix A can be factored as 

A = W#U 

The signal part of the whitened process now is a "unitary 
mixture" of the source signals. Note that all information 
contained in the autocorrelation matrix is "exhausted^ after 
the whitening procedure in the sense that changing U in (13) 
to any other unitary matrix leaves the autocorrelation matrix 
of z(0 unchanged. Note also that besides whitening the signal 
part of the observations, multiplication by a whitening matrix 
W reduces the array output to an n-dimensional vector. 

Under the assumption of the linear model (1), the data 
autocorrelation matrix has the following structure: 

(12) 
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Combining (14) and (5), we have 

AA" = R-a2I 

(14) 

(15) 

Hence, from (II) and (15), the whitening matrix W can be 
determined from the array output autocorrelation R. As shown 
by (12), finding a whitening matrix still leaves undetermined 
some unitary factor in A. This "missing factor" U can be 
determined from higher order statistics, as investigated in [6J. 
[21], [7], or from second order statistics as proposed in [12]. As 
explained below, by exploiting the <-/ dependence structure 
(10), the missing rotation may be also retrieved from spatial 
time frequency distributions at properly chosen t-f points. 

B. Second Step 
By pre and postmuliiplying the STFD matrices Dxx(i,/) 

by W, we obtain the whitened STFD-matrices as 

D„(t)/) = WDxx(c,/)W (16) 

which is. in essence, the STFD of the whitened data vector z. 
From the definition of W and (10). we may express D„(t, /) 

D„(t)/) = UD„(tI/)UH. (17) 

Since the matrix U is unitary and D„(f,/) is diagonal. (17) 
shows that any whitened data STFD-matrix is diagonal in 
the basis of the columns of the matrix U (the eigenvalues 
of D„(t,/) being the diagonal entries of D„(t,/))- As a 
consequence, the missing unitary matrix U may be obtained 
as a unitary diagonalizing matrix of a whitened STFD matrix 
for some t-f point corresponding to a signal auloterm. More 
formally, we have the folowing theorem. 
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Tlxeorem 1 (First Ideniifiabiliry Condition): Let (f../„) be 
a l-f point corresponding to a signal autolerm and V be a 
unitary matrix such that 

VwD„(ta)/a)V = diag|,/I ,/„]. (18) 

For all 1 < iV j <n   D.,.,((m,f.) * D,jr)(taJa).   (19) 

Then 
• V is equal to U up to a phase and a permutation of its 

columns; 
• there exists a permutation 7 on {l,...n} such that 

[D.„,(t.Ja),...,D,.,„(t.J.)] = \dlW,...,dl(H}). 

This is a direct consequence of the spectral theorem for normal 
matrices (see [22, Th. 2J.4]). We recall that an n x n matrix 
M is said to be normal if MM* = MHM. According to 
Theorem I, for the (/„,/.) point, if the diagonal elements 
of D„(/„,/.) are all distinct, the missing unitary matrix 
U may be "uniquely" (i.e, up to permutation and phase 
shifts) retrieved by computing the eigendecomposition of 
D%i('..-/u)- However, when the l-f signatures of the different 
signals are not highly overlapping or frequently intersecting, 
which is likely to be the case, the selected {ta, /„) point often 
corresponds to a single signal auto-term, rendering matrix 
D„(t„,/„) deficient. That is, only one diagonal element 
of D„s(t„.f„) is different from zero. It follows that the 
determination of the matrix U from the eigendecomposition 
of a single whitened data STFD-malrix is no longer "unique" 
in the sense defined above. 

The situation is more favorable when considering simulta- 
neous diagonalization of a combined set {Dzz(tj.fi) | i = 
] ,]i] of j) 5TFD matrices. This amounts to incorporating 
several t-f points in the source separation problem. 

Theorem 2 (SecondIdentifiability Condition): Let  (f.i,fi). 
(tj, t2), {IK-I-K) be K t-f points corresponding to signal 
auloterms, and let V be a unitary matrix such that 

For all 1 < k < K 

V*D„(/t, A)V = diag[(MA;),..., d„(k)) (20) 
For all 1 < i ^ j < n    there exists Jt.    1 < Jt < K 

D...A'k.h)*D.i,)(tk,h). (21) 

Then 
• V is equal to U up to a phase and a permutation of its 

columns; 
• there exists a permutation 7 on {],...n} such that 

(A.,„(W*) DM.(tt,fk)] 
= K(I)(*)t... ,«»,,,,,(*)]   1 <*•<*. 

This is a consequence of the uniqueness of the joint diago- 
nalization: (see [12, Th. 3]). Again, the existence of a unitary 
matrix V that simultaneously diagonalizes the set of STFD 
matrices |D„(r j. /,),..., DIX(«A: /A)J is guaranteed by (17) 
for any choice of /-/ points corresponding to signal auloterms. 
Condition (21). although it is is weaker than condition (19). it 
is not always satisfied. In particular, in the trivial case where 

the sources show identical t-f signatures, the mixing matrix A 
cannot be identified by resorting to Theorem 2. Conversely, 
when the source signals have different t-f signatures, it is 
always possible to find a set of t-f points corresponding to 
signal autoterms such that condition (21) is met. 

C. Joint Diagonalization 

The joint diagonalization [12J. [13] can be explained by 
first noting that the problem of the diagonalization of a single 
n x n normal matrix M is equivalent to the minimization of 
the criterion (23] 

C(M,V)d=Ir-£|vrMv,f (22) 

.over the set of unitary matrices V = [vt,..., v„J. Hence, 
the joint diagonalization of a set {M* | Jt = 1 — Ä"} of Ä" 
arbitrary nxn matrices is defined as the minimization of the 
following JD criterion: 

C(V) *' - £ C(M». V) = - £ KMtv,| (23) 
ki 

under the same unitary constraint. 
It is important to note that the above definition of joint 

diagonalization does not require the matrix set under con- 
sideration to be exactly and simultaneously diagonalized by 
a single unitary matrix. This is because we do not require 
the off-diagonal elements of all the matrices to be cancelled 
by a unitary transform; a joint diagonalizer is simply a 
minimizer of the JD criterion. If the matrices in {M* | k = 
1 • --K} are not exactly joint diagonalizable, the JD criterion 
cannot be zeroed, and the matrices can only be approximately 
joint diagonalized. Hence, an (approximate) joint diagonalizer 
defines a kind of an "average eigenstructure." Note that a 
numerically efficient algorithm for solving (23) exists in [12] 
and is based on a generalization of the Jacob! technique [23]. 

D. Summary 

Based on the previous sections, we can introduce a 
time-frequency separation (TFS) algorithm. The TFS is 
defined by the following implementation. 

1) Estimate the autocorrelation matrix R from T data 
samples. Denote by A1..... A„ the »1 largest eigenvalues 
and hj,..., h„ the corresponding eigenvectors of R. 

2) Under the white noise assumption, an estimate a1 

of the noise variance is the average of the m — n 
smallest eigenvalues of R. The whitened signals are 
z(t) = \z1{t),...,z„(t)]T computed by 2,(0 = 
{Xi - c7)-i hjx(t) for 1 < i < n. This is 
equivalent to forming a whitening matrix by W = 
|(A,-a2)-ihl5...,(An-ä?)-Jh„]w. 

3) Form K matrices by computing the STFD of z(i) for a 
fixed set of (*,-,/,) points, i = 1.....K. corresponding 
to signal auloterms. 

4) A unitary matrix U is then obtained as joint diagonalizer 
of the set {D„(t„ /;) 11 = 1 K). 

5) The source signals are estimated as s(f) = UH'VVx(0. 
and/or the mixing matrix A is esiimaied as Ä = W*Ü. 
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V.  ASYMPTOTIC PERFORMANCE ANALYSIS 

In this section, an asymptotic performance analysis of the 
proposed method is carried out. To ease the derivations, we 
make the following two assumptions. 

HI') Each source signal aj(t) is a deterministic sequence. 
H2') The additive noise n(f) is complex circular Gaussian 
process. 

To eliminate the phase and permutation indeterminacies, we 
shall assume that they are fixed in such a way that the matrix 
estimate A is closer to the true mixture matrix A than to some 
other matrix equal to A up to a phase and a permutation of 
its columns. In addition, the STFD are computed at a set of 
t-f points {(*,-,/j)t* = \,---,K) such that the identifiability 
condition of Theorem 2 is satisfied. 

A. Performance Index 

Rather than estimating the variance of the coefficients of 
the mixing matrix, it is more relevant with respect to the 
source separation issue to compute an index that quantifies 
the performance in terms of interference rejection, as follows. 
Assume that at each time instant t, an estimate of the vector of 
source signals is computed by applying the pseudoinverse of 
the estimated mixture matrix to the received signal x(t). i-c., 

s{t) = A*x(0 = A#As(0 + A#n(f ) (24) 

where A* = ÜWW. We stress that in general, this procedure 
is not optimal for recovering the source signals based on an 
estimate Ä. For large enough sample size T, matrix A should 
be close to the true mixing matrix A so thai A*A is close 10 
the identity matrix. The performance index used in the sequel 
is the interference-to-signal ratio (1SR), which is defined as 

1„ = £|(Ä*AU2. (25) 

This actually defines an 1SR because by our normalization 
convention (5), we have 2„ ~ 1 for large enough T. Thus, 
Tpq measures the ratio of the power of the interference of the 
gth source to the power of the pih source signal estimated as 
in (25). As a measure of the global quality of the separation, 
we also define a global rejection level 

Z^t'^j,,,. (26) 

B. Outline of the Performance Analysis 

The purpose of this section is to give a closed-form expres- 
sion of the mean rejection level (25). Giving the details of 
a rigorous proof goes far beyond the scope of this paper. We 
present only an outline of the derivation below with additional 
mathematical details in the Appendix. 

The matrix estimate „4 is a •"function" of the data 
autocorrelation    matrix    R.    and    the    STFD    matrices 
(D„(f,,/,),Dxx(i2,/2) Dxx(tA-,/K)) of the observed 
signal x(t). The computation proceeds in two steps: First, 
we compute the leading term in the Taylor series expansion 
of |(.4*J)W|2 (see Lemma I). Then, by computing the 
expectation of the aforementioned leading term, we obtain 
the desired result. 

Lemma I: The Taylor series expansion of |(A  A),,| 
given for p j£ q by 

- is 

|(A#A)„|2 = |«„C„|2 + 2>„«M(*)[CWC„(*) 
it=i 

+ C„C„(k)) + 
K,K 

,(*)«„(0 

x c„ikycvw 

with 

Oh|m||3 + £||5Dxx(r*,A)l|3J 

dr = [D.r.Muh) D.r.,(*A-,A-)]T 

a"-1+ ld,-d„l* 

0„(A.) = 
£>;„>,/*)-*?;,,.(**■/*) 

|d, - d,|* 

c = -iAW<w
+£nm(A«A)- 2 2(m - n) 

C(k)=±A#SDxx{tkJk)A*" 

6R = R-R 

6Dxx(tkJk) = Dxx(tkJk) - A diag[D„,,(«*,/*).... 

D,„.AtkJk)]A
H 

= A{DJ.(ti.,A.)-diag[D,I,1(tifc,A)---- 

!>...,„(«*. A)]} AD,„(«*./*) 

+ I)n,(h,h)AH + DB„(f*./*) 

where Tr() is the trace of the matrix, II denotes the orthogonal 
projector on the noise subspace (i.e., the subspace orthogonal 
to the range of matrix A), and C,,,() is the ;*yth element of 
the matrix C(-). 

The proof of the above lemma follows closely the same 
steps used in [ 12]. For more details, see Appendix A. 

The expectation of |(Ä#A)^,|3 can be computed from 
the expectations of |C,,,|?. C„C,v(fc), and Cw(l)Cm{k). 
Conditions HI') and H2') reduce this computation to simple 
algebra, yielding 

E[C„C„{k)) = -yTvrD,r,,Vi:h) - "- [|'Tw,.|"/(., 

+ »vJ't-AH ~ 4T  '■''''' 
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+ Dr,.r{t,J,)JPq 

+ F.r,,{k,l)J„ + F,„,(l.k)Jrp) 

where we have set 

J„=(A"A)-J 

r- = - m     4 fl<(v»+H) 
fr=» J 

+00      -foo 

*w*.o- E E 
+00 

E ^(m'r) 
x #m - v - v' + tk - U, v').ip{tk + m + v) 

x J»;(*t + m - v - 2«') e-
j4'/iVe-Juf,r' 

+3c  r +00 

*H=  E      E  #("«•")**(»» + ('*-'/)• f) 

It can be readily shown that [24] 

Jim T£||«R||3 = 0 
7"—* 00 

Jim TE\\&T>xx{lk.Jk)f = Q. 
T—*oo 

Using the above results, the ISR is asymptotically given by 

■2„ = 2^ + a2J^ + ^2^ (27) 

where the coefficients of the expansion are 
K 

°P«lrJ>il   " EaPi°p^k) 

rT„D,t,r(h,fk) + rTqrD,r.,{tk,fk)) 
K.K 

J
1
 =- J>9        4 -jT (rrrp^9 + rTiqJpp) 

»=i,i=i 

C. Discussion 

For high signal-to-noise ratio, the expansion (27) of the ISR 
is dominated by the first term 2j,. Below, some comments on 
this term are given. 

• If the sources p and q have identical t-f signatures over 
the chosen t-f points (i.e., d, = d,), the corresponding 
ISR JOT -♦ 00. This confirms the statement of Theorem 2. 

• As the correlation function TTpq of the sources p and q 
and the crosslerms Dv»t (**./*) vanish, the correspond- 
ing ISR given by JM also vanishes, yielding a perfect 
separation. 

• 2J, is independent of the mixing matrix. In the array 
processing context, it means that performance in terms of 
interference rejection is unaffected by the array geometry 
and, in particular, by the number of sensors. The per- 
formance depends only on the sample size and the t-f 
signatures of the sources. 

• In (27), the sum over k is a sum over time and frequency. 
Hence, the joint diagonalization can be seen as a kind of 
averaging. Indeed, the choice of a large number of t-f 
points increases the performance. 

Note that from the above analysis, the choice of the t-f 
kernel has a direct impact on the performance of the proposed 
method. Optimal smoothing kernels could, at least theoreti- 
cally, be obtained by extending the previous derivations. This 
point is left to further study. 

VI. PERFORMANCE EVALUATION 

In this section, the performance of the t-f separation (TFS) 
method, as investigated via computer simulations, is reported. 
Evaluation of the domain of validity of the asymptotic perfor- 
mance expansion developed in the previous section are also 
presented. 

A. Numerical Experiments 

Example J: This example deals with real source signals. 
Two speech signals sampled at 8000 Hz are mixed by the 

mixing matrix 

K,K 

A_ [1.0    0.6   0.417" 
[0.5    1.0   0.8 J   " 

+ E «W*)»M<O(JW**,/*M 
*=l.t=l 

vp 

+ D,,,r(1,.f,)J„+F,r,r(k,l)J„+F.,,,{k,l)Jpp) 

The plots of the two individual speech signals are shown 
in Fig. 1 and their TFD's are displayed in Fig. 2. Speech "1" 
and "2" of a male speaker are the words "Cars" and "Cats," 
respectively. The TFD's of the observed speech signals at three 
sensors are shown in Fig. 3. Fig. 4 shows the TFD's of the 
speech signals estimated by TFS. It is clear that TFS works 
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V"»> 

Tncbt 

Rg. I.   Plots °f individual speeches. 

FII. 2.   TFD*s of the individual speeches. 

well in this case. The purpose of this example is lo test the 
algorithm when speech signals are used. It may not reflect a 

real speech environment. 
To assess Ihe robustness of the TFS algorithm with respect 

to noise, we corrupt the observed speech signals by an ad- 
ditive white Gaussian noise, and we compare in Fig. 5 Ihe 
performance of the second-order blind identification (SOB1) 

algorithm proposed in |I21 and the TFS algorithm over the 
lol'O dBJ rans-v ■>! simal-to-noise ratio (SNR). The mean 
rejection kvcKafc ^:.lu:ued here over 100 Monte-Carlo rims 

Fij. 3.   TFD's of the observed signals. 

TTT» <4 alin»c <d >|«A I 

TF0<«.-*imr>')f™*? 

mr^" 

45 ■».* 

Rj. 4.   TFD's of ihe esiimale signals. 

with T = 60SJ samples. It is evident from Fig. 5 that in 
this case, the TFS algorithm outperforms SOB1 algorithm. The 
increase of this robustness of the TFS algorithm with «spec; 
to noise may be explain by the effect of spreading the noi« 
power and of localizing the source energy in the /-/ domair. 

Example 2: In this example, we consider a uniform line* 
array of three sensors having half wavelength spacing an. 
receiving signals from two sources in Ihe presence of whit. 
Gaussian noise. The sources arrive from different direction 
fa = 0 and »j = "-">* Uhe particular structure or the arra;. 
manifold is. ol v..ur>c. not exploited here). The source stau: 
are generaied b> tillering a complex circular white (hui<u 
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~0    .  2 4 t 

Fig. 5.   Performance of SOB! and TFS algorithms versus SNR. 

TABLE I 
PERFORMANCE OF SOBI AND TFS ALGORTTHMS VERSUS */ 

Sprrtnl shift (tf) Mran Rrjrr.tim ifr*/ in dB 

SODI TFS 

0.000 -8.86 -12.22 

0.002 -10.01 -12.21 

0.010 -10.18 -12.34 

0.050 -11.0D -12.53 

0.200 -12.92 -12.54 

h(t) 

I: 

processes by an AR model of order one with coefficient 
ai = pexp(jf27r/i(0) and a2 = pexp(j27r/2(t)), where we 
have 

[0.0625,    for t= 1:400 
0.1250, for t = 401 : 450 

[ 0.3750, for t = 451 : 850 
f 0.3750, forl= 1:400 
0.1250+«/,    for 1=401:450 

[0.0625, fort = 451: 850 

p = 0.85. 

The signal-to-noise ratio (SNR) is set at 5 dB. The kernel 
used for the computation of the TFD's is the Choi-Williams 
kernel 116], which provides a good reduction of the crossterms. 
For the TFS algorithm, eight TFD matrices are considered. The 
corresponding t-f points are those of the highest power in the 
t-f domain. The mean rejection level is evaluated over 500 
Monte-Carlo runs. 

Table 1 shows the mean rejection level in dB versus the 
"spectral shift" Sf both for the SOBI [12] and TFS algorithms. 
Note that for Sf = 0, the two Gaussian source signals have 
identical spectral shape. In this case, while SOBI fails' in 

' We admit that a source separation algorithm fails when the mean rejection 

level is greater than -10 dB. 
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separating the two sources, TFS succeeds. Note also that in 
contrast to SOBI, TFS presents constant performance with 
respect to 6f. 

B. Experimental Validation of the Performance Analysis 

This section deals with the evaluation of the domain of 
validity of the first-order performance approximation (27). 

The same settings than in Example 2 are used, with the ex- 
ception of the source signals, which are deterministic sinusoids 
at frequencies /i = 0.4375 and f2 = 0.0625. The TFD's are 
computed using windowed Wigner distribution. The chosen 
window width is M = 2L+1, with L = 32. The identification 
is performed using £ STFD matrices spaced in time by M 
samples (T being the sample size). The overall rejection level 
is evaluated over 500 independent runs. 

In Fig. 6, the rejection level Ip.,f is plotted in decibels as a 
function of the noise power o2 (also expressed in decibels). In 
Fig. 7, the rejection level I^s is plotted in decibels as against 
sample size. Both Figs. 6 and 7 show that the approximation 
is belter at high SNR and for large sample size. This means 
that the asymptotic conditions are reached faster in this range 
of parameters. 

VII. CONCLUSION 

In this paper, a new blind separation approach using t-f 
distributions (STFD's) is introduced. It is devised to primarily 
separate sources with temporal nonstationary signal character- 
istics. The new approach is based on the joint diagonalization 
of a combined set of spatial t-f distribution matrices. The later 
are made up of the auto- and cross-TFD's of the data snapshots 
across the multisensor array, and they are expressed in terms of 
the TFD matrices of the sources. The TFD matrices of the data 
and sources appear, respectively, in place of the spatial and 
signal correlation matrices commonly used under stationary 
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environment. The diagonal structure of the TFD matrix of the 
sources is essential for the proposed approach and is enforced 
by incorporating only the T-F points corresponding to the 
signal autoterms. The off-diagonal elements are crossterms that 
become negligible by using a reduced-interference distribution 
kernel. We have focused on the TFD's of Cohen's class, 
however. We can use any other bilinear l-f distributions signal 
representations, such as the affine and hyperbolic classes. 

The proposed approach shows a number of attractive fea- 
tures. In contrast to blind source separation approaches using 
second-order and/or high-order statistics, it allows the separa- 
tion of Gaussian sources with identical spectral shapes but with 
different t-f localization properties. The effect of spreading 
the noise power while localizing the source energy in the t-f 
domain amounts to increasing the robustness of the proposed 
approach with respect to noise. The paper has included numer- 
ical experiments of simple nonstationary signals as well as real 
source signal data. These experiments have demonstrated the 
effectiveness of the proposed technique in separating a wide 
class of signals. The asymptotic performance analysis of the 
proposed technique has been provided. 

APPENDIX A 
PROOF FOR LEMMA 1 

In this section, a sketch of the proof for Lemma I is 
presented. We follow the same steps as in [12]. The square 
modulus \IpV\7 is expressed as 

|/M|2=|(Ü*WA)„|*. (28) 

We decompose the matrix WA under its polar form 

VH = WA (29) 

where V is a unitary matrix, and H is a non-negative_ semjde- 
fined hermitian matrix; matrix H verifies H2 = AHW"WA 
(see [22, Ih. 7.3.2, p. 412J). According to the convention 

outlined in Section C, matrix H is expected to be close to the 
identity matrix; let (H = H — I denote the estimation error 
of the hermitian part of WA. Using standard perturbation 
calculus (see, for example, [25]), it can be shown that 

ffl^-1 A* ERA*" + —^ -Ti[TlSR)(AH A)"1 

2 2\m — n) 
+ o{SR). (30) 

From the polar decomposition (29), the whitened STFD ma- 
trices can be similarly approximated at the first order, for all 
k / 0, as 

D„(it,A) 

= W(A diag [D,,., (it, A), -., D.„.n (tk, /»)] AH 

■+ D»(i*,A) - Adiagfp,,,,(«*, A),..., 

= V(Hdiag[i?,J.1(tt,A),...,ö...„(It,A)]H 
+ VHW6Dxx{tk, A)W"V) V". (31) 

The joint diagonalization criterion aims at searching the uni- 
tary matrix that minimizes the off-diagonal elements of a set 
of matrices: here, the whitened STFD matrix DZI(tk, A)- 1' 
can be shown (see a discussion in [26]) that if the set of 
matrices entering in the JD are multiplied by a common 
unitary matrix, then the result of the JD will simply be 
multiplied by this common matrix. Formally, let Nj.,..., Np 

be arbitrary matrices, and let U be an arbitrary unitary matrix; 
then, JD{UN,UW,...,UNPUH} = UJI>{N,,... ,N^}. 
Applying this result in our situation, it comes from (31) that 
the unitary matrix U resulting from the JD of the set of 
whitened STFD matrices D„(«i,A).... ,B„(lK, A) can 
be decomposed as 

Ü = VU0 

where the matrix Uo minimizes the JD criterion for the 
matrices 

Mt = H diag [D.„, (tk, A) D,.,„ (t,, A)] H 

+ V"W«D3tx(t*,A)WwV 

= diag[Z?.1„(tt, A),- ■.,£>,„.„('*, A)] 

+ diagfZ?.,,, (tk, A), •-•,/?...„ {h, A)]*H 

+ «Hdiag[£>.,.1(tt,A) D,n,Jtk, A)] 

+ V"W*D„(ifc, A)W"V + o{6Bxx(tk, A)) 

= d]ag[D.„l(tk,fk),...,D,„.JtkJk)] 

+ di*g[D„,tVkJk),...,D,„,AU,fk)]6H 

+ SHdizg[D„.,(tk,fk) £>.„.„ (tk! A)] 

+ A*6Dxx(tk,fk)A*" + o{6Dxx{tk,fk)) 

= <KaglA,.,(t*.A) D.n.Jtk,fk)] 
+ Zk + o(6Dxx(tk,fk)),    \<k<K 

where 

U^ diagji?.,., {tk, A) />.„,„ (!*, h)]m 
+ mdhg[D,1„(tk,fk),...,D,„.Ah,fk)] 

+ A*6Dxx(lkJk)A#H. 
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Hence, (28) can be written as 

|7p,|> = |(ü»H)J2. 
As shown in [26], the unitary matrix Ü0 is given at first order 
by 

sv0 = i Y.Y, (««wn^n. + Q;.(fc)nra
Hn,) 

{6Ug = -6Vo) (32) 
where IJr = ere; is the orthogonal projector on the rth vector 
column er of the identity matrix I„. The performance index 
becomes 

|/„|2 = |(I-«Uo)(I+«H)ß, 

~|ffl-«J0£,   forp/?. (33) 
Including expressions (30) and (32) in (33) leads to the Taylor 
expansion of Lemma 1. 

REFERENCES 

|1) CM. Berrah, "Parameter yield estimation for a MOSFET integrated 
ciruil." in Pmc. 1990 IEEE ISCAS. pp. 2260-2263. 

|2)  E E Curclon and R. B. D'Agoslino. FACTOR ANALYSIS on Applied 
Approach.    New York: Lawrence Erlbaum, 1983. 

|31  R. Schmidt. "Multiple emitter location and signal parameter estimation," 
IEEE Trans. Antennas Pmpagat., vol. AP-34. pp. 276-280, 1986. 

|4) C. Dcmomcnt, "Image reconstruction and restoration: Overview of 
common estimation structures and problems," IEEE Trans. Acoust.. 
Speech. Signal Processing, vol. 37. pp. 2024-2036. Oct. 1989. 

151  C. Julien and J. Herault. "Detection de grandeurs primitives dans un 
message composite par une architecture de calcul ncoromimemque en 
apprentissage non supervise," in Pmc. Crelsi, Nice, France, 1985. 

|6)  M. Gaeta and J.-L. Lacoume, "Source separation without a priori 
knowledge: The maximum likelihood solution," in Proc. EUSIPCO, 
1990. pp. 621-624. 

|7) P. Comon. "Independent component analysis, a new concept?" Signal 
Process., vol. 36. pp. 287-314, 1994. 

|8] J.-F. Cardoso and A. Souloumiac, "An efficient technique for blind 
separation of complex sources," in Proc. IEEE SP Workshop Higher 
Order Sioiisi.. Lake Tahoe, CA. 1993. 

19) E Moreau and O. Macchi. "New self-adaptive algorithms for source 
separation based on contrast functions," in Proc. IEEE SP Workshop 
Higher Order Statist.. Lake Tahoe, CA, 1993. 

I10J A. Belouchrani and J.-F. Cardoso, "Maximum likelihood source sepa- 
ration for discrete sources," in Proc. EUSIPCO. 1994, pp. 768-771. 

Ill] L. Tong and R. Liu, "Blind estimation of correlated source signals," in 
Proc. Asilomar Con/., Nov. 1990. 

112] A. Belouchrani, K. A. Meraim. J.-F. Cardoso, and E Moulines, "A blind 
source separation technique using second order statistics," IEEE Trans. 
Signal Processing, vol. 45, pp. 434-444, Feb. 1997. 

113] M. Wax and J. Sheinvald, "A least-squares approach to joint diag- 
onalization," IEEE Signal Processing Lett., vol. 4, pp. 52-53, Feb. 
J997. 

114) K. Matsuoka. M. Ohya, and M. Kawamoto. "A neural net for blind 
separation of nonstationary signals," Neural Networks, vol. 8, pp. 
411-419, 1995. 

115) F. Hlawaisch and W. Kranenthaler, "Blinear signal synthesis," IEEE 
Trans. Signal Processing, vol. 40, pp. 352-363. Feb. 1992. 

116) L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice- 
HaJL 1995. 

117) J. Jeong and W. Williams. "Kernel design for reduced interference 
distributions." IEEE Trans. Signal Processing, vol. 40. pp. 402-412. 
Feb. 1992. 

118) R. Baraniuk and D. Jones, "A signal dependent time-frequency repre- 
sentation: Optimum kernel design," IEEE Trans. Signal Processing, vol. 
41, pp. 1589-1603, Apr. 1993. 

119) B. Ristic and B. Boashash, •'Kernel design for lime-frequency signal 
analysis using the Radon transform," IEEE Trans. Signal Processing, 
vol. 4), pp. 1996-2008. May 1993. 

108 

(20) M. Amin, G. Venkatesan, and J. Carroll, "A constrained weighted least 
square approach for time-frequency kernel design," IEEE Trans. Signal 
Processing, voL 44, pp. 1111-1123. May 1996. 

|21) J.-F. Cardoso and A. Souloumiac, "Blind beamfonning for non Gaussian 
signals." Proc. Inst. Beet £hg„ vol. 140, no. 6. pp. 362-370, 1993. 

1221 R. Horn and C Johnson, Matrix Analysis. Cambridge, U.K.: Cam- 
bridge Univ. Press, 1985. 

|23) G. H. Golub and C F. Van Loan, Matrix Computations. Baltimore, 
MD: Johns Hopkins Univ. Press, 1989. 

(24) M. Rosenblatt, Stationary Sequences and Random Fields. Berlin, Ger- 
many: Birkhauser-Verlag, 1985. 

125) A. Bcloochrani, K. Abed-Meraim, J.-F. Cardoso, and E Moulines, "A 
second order blind source separation technique: Implementation and 
performance," Tech. Rep. 94D027, Telecom Paris, Signal Dept, 1994. 

|26] J.-F. Cardoso, "Perturbation of joint diagonalizen," Tech. Rep. 94D023, 
Telecom Paris, Signal Dept, 1994. 

Add Belouchrani received the Stale Engineering 
degree, in 1991 from ihe National Porylhechic 
School of Algiers, Algiers, Algeria, the M.&. 
degree in signal processing from the Institut 
National Polytechnique de Grenoble (1NPGX 
Grenoble, France, in 1992, and the PhD. degree in 
signal and image processing from Ecole Nationale 
Superienre des Telecommunications (ENST), Paris, 
France, in 1995. 

He was a Visiting Scholar at the Electrical 
Engineering and Computer Science Department, 

University of California, Berkeley, from 1995 to 1996, working on fast 
adaptive blind equalization and carrier phase tracking. He was with the 
Department of Electrical and Computer Engineering, Villanova University, 
Villanova, PA. as a Research Associate from 1996 to 1997. He also served 
as a consultant to Comcast Inc.. Philadelphia, PA, during this period. In 
February 1997, he was a visiting scientist at the Laboratory for Artificial 
Brain Systems, Riken, Japan. From August 1997 to October 1997. he was 
wilh Alcatel ETCA, Belgium, working on the Very High Speed Digital 
Subscriber Line (VDSL). He is currently wilh the Electrical Engineering 
Department, National Polytechnic School of Algiers, as an Assistant Professor. 
His research interests are in the areas of digital communications and 
statistical signal processing including (blind) array processing, performance 
analysis, blind source separation, blind equalization, systems identification, 
damped sinusoids estimation, adaptive algorithms, expectation-maximization 
techniques applied to communications, nonstationary signals, and spread 
spectrum communications. 

Moeness G. Amin (SM'9I) received Ihe B.Sc. 
degree in 1976 from Cairo University, Cairo. Egypt, 
Ihe M.Sc. degree in 1980 from University of Pe- 
troleum and Minerals, Dharan, Saudi Arabia, and 
ihe Ph.D. degree in 1984 from the University of 
Colorado, Boulder, all in electrical engineering. 

In 1984, be joined University of Colorado, Den- 
ver, as a Visiting Assistant Professor. He has been 
on ihe Faculty of the Department of Electrical 
and Computer Engineering at ViUanova University, 
Villanova, PA, since 1985. where is now a Professor. 

His current research interests are in the areas of time-frequency analysis, 
spread spectrum communications, smart antennas, and blind signal processing. 

Dr. Amin is currently an Associate Editor of the IEEE TRANSACTIONS 
ON SIGNAL PROCESSING and a member of ihe Technical Commiiiee of the 
1FFP Signal Processing Society on Signal Processing for Communications. 
He was the General Chair of Ihe 1994 IEEE International Symposium on 
Time-Frequency and Time-Scale Analysis and is Ihe General Chair of Ihe 
2000 IEEE Workshop on Statistical Signal and Array Processing, Poconos, 
PA. He is the recipient of the 1997 IEEE Philadelphia Section Award 
for "Outstanding Intellectual and Organizational Contributions to the IEEE 
Philadelphia Section in the Area of Signal Processing." He is also Ihe 
recipient of Ihe 1997 Villanova University Outstanding Faculty Research 
Award. Over ihe past four years, he chaired three All-Day Workshops on 
Smart Antennas, Recent Trends in Adaptive Filtering, and Advanced Signal 
Processing Applications in Wireless Communications. He is a member of 
Sigma Xi, Eta Kappa Nu, and Phi Kappa Pin. 

If 



Journal of Multidimensional Systems and Signal Processing, Kluwer, Academic Publishers, October 1998. 

On the Use of Spatial Time Frequency Distributions 
For Signal Extraction. 

Adel Belouchrani and Moeness G. Amin 

Department of Electrical and Computer Engineering, 
Villanova University, Villanova PA 19085, 

adel,moeness@ece.vill.edu 

Abstract 

This paper deals with the extraction of signals from their instantaneous linear mixtures 

using time-frequency distributions. Fundamentally, this problem is a signal synthesis from 

the time-frequency (t-f) plane. However with the incorporation of the spatial information 

provided by a multisensor array, the problem can be posed as special case of blind source 

separation. So far, the blind source separation has been solved using only statistical informa- 

tion available on the source signals. Herein, we propose to solve the aforementioned problem 

using time-frequency signal representations and the spatial array aperture. The proposed 

approach relies on the difference in the t-f signatures of the sources to be separated. It is 

based on the diagonalization of a combined set of spatial time-frequency distribution ma- 

trices.  It A numerical example is provided to illustrate the effectiveness of our method. 

This work is supported by the Rome Lab., contract # F30602-96-C-0077 
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1    Introduction 

In statistical signal and array processing, the problem of signal extraction has received 

the name of blind source separation, which becomes an emerging field of fundamental research 

with a broad range of applications.   It is motivated by practical problems that involve 

several source signals and several sensors. Each sensor receives a linear mixture of the source 

signals. The problem of the blind source separation consists then of recovering the original 

waveforms of the sources without any knowledge of the mixture structure. This mixture is 

often a convolutive mixture. However, in this paper we focus on the blind identification of 

an instantaneous linear mixture, which corresponds to a linear memoryless channel. This 

choice is motivated not only by the fact that such model is mathematically tractable, but 

also by the applicability to various areas, including semiconductor manufacturing process 

[1], factor analysis [2], narrowband signal processing [3], and image reconstruction [4]. 

So far, the problem of blind source separations has been solved using statistical infor- 

mation available on the source signals. The first solution to the source separation problem 

was proposed almost a decade ago [5] and was based on the cancellation of higher order 

moments assuming non-Gaussian and i.i.d source signals. Other criteria based on mini- 

mizations of cost functions, such as the sum of square fourth order cumulants [6], contrast 

functions [6] or likelihood function [7], have been used by several researchers. In the case of 

non i.i.d source signals and even Gaussian sources, solutions based on second order statistics 

are possible [8]. 

When the frequency content of the source signals is time-varying, one can take advan- 

tage of the powerful tool of time-frequency distributions to separate and recover the incoming 
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signals. The underlying blind source separation problem can be posed as a signal synthesis [9] 

from the t-f plane with the incorporation of the spatial diversity provided by the multisensor 

array. In this case, no masking is required and cross-terms no longer represents ambiguity 

in the synthesis of individual components. Herein, we introduce a new blind identification 

technique based on a joint diagonalization of a combined set of spatial time-frequency dis- 

tribution matrices. The new approach exploits the difference between the t-f signatures of 

the sources. This method presents a number of attractive features. In contrast to blind 

source separation approaches using second-order and/or high order statistics, the proposed 

approach allows the separation of Gaussian sources with identical spectra. Moreover, the 

effects of spreading the noise power while localizing the source energy in the time-frequency 

domain amounts to increasing the signal to noise ratio (SNR). 

2    Data Model 

Consider m sensors receiving an instantaneous linear mixture of signals emitted from 

n sources. The m x 1 vector x(t) denotes the output of the sensors at time instant t which 

may be corrupted by an additive noise n(<). Hence, the linear data model is given by: 

x(i) = As(i) + n(i), (1) 

where the m x n matrix A is called the 'mixing matrix'. The n source signals are collected 

in the nxl vector s(i). The mixing matrix A is full column rank but is otherwise unknown. 

In contrast with traditional parametric methods, no specific structure of the mixture matrix 

is assumed. The problem of blind source separation has two inherent indeterminacies such 

that the source signals can only be identified up to a fixed permutation and some complex 
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factors [8]. In the underlying problem, we are concerned with the separation of signals which 

may have similar spectra, but still possess different structures and localization properties in 

the time-frequency domain. 

3    Spatial Time-Frequency Distributions 

The Cohen's class of time-frequency distributions (TFD) [10] of the signal x(t) is given 

by 

D„(t, /) = /"°°  r° <f>{t-u, r)x{u + r/2)i-(u - r/2)e-
J'2x/T<Wr (2) 

J—oo J — oo * 

where t and / represent the time index.and the frequency index, respectively. The kernel 

<f>(t,r) is a function of the time and lag variables. The cross-TFD of two signals x,(i) and 

x2(<) is defined by 

#x,„(I, /) = ^~ y^~ <f>{i - u, r)x, (u + r/2)x;(u - rI2)e~j7^dudr :   (3) 

Expressions (2) and (3) are now used to define the following data spatial time-frequency 

distribution (STDF) matrix, 

Dxx(*,/) = f^ f^ 4>{t - U,T)X(U + T/2)X*(« - Tl2)e-'2TjrdudT (4) 

where (D«(t,/)]y = DXiTj{t,f),   for  i,j = l,-.-,n. 

A more general definition of the spatial time-frequency distribution matrix is given by, 

Dxx(f,/) = /°°  A00 $(* - U,T) ©X(H + r/2)x*(« - r/2)e-i2*/rrf«(/r (5) 
«/—CO «/—CO 

where 0 designs the Hadamard product, and [$(f,r)],7 = &J(<,T) is the kernel associated 

with the pair of the sensor data x,(f) and Xj(i). 
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Under the assumption of the linear data model of Eq.(l) and neglecting the noise, the 

STFD matrix takes the following simple structure: 

Dxx(t,/) = ADM(f,/)AH (6) 

where the superscript H denotes the complex conjugate transpose of a matrix and Dg^f, /) 

are the signal TFD matrices. We note that Dxx(i,/) is of dimension m x m, whereas 

®ss(t,f) is of n x n dimension. For narrowband array signal processing applications, matrix 

A holds the spatial information, and through a similarity transformation, it maps the auto- 

and cross-TFDs of the sources into auto- and cross-TFDs of the data. 

Expression (6) is similar to that which commonly used in blind source separation [8] 

and direction of arrival (DOA) estimation problems, relating the signal correlation matrix to 

the data spatial correlation matrix. The two subspaces spanned by the principle eigenvectors 

of Dxx(<,/) and the columns of A are, therefore, identical. Since the off-diagonal elements 

are cross-terms of Dss(z,/), then this matrix is diagonal for all (t-f) points which correspond 

only to the signal auto-terms. In the sequel, we consider the (t-f) points, which verify such 

property. In practice, to simplify the selection of such points of high power localization, 

we apply the smoothing kernel 4>(i,T) that significantly decreases the contribution of the 

cross-terms in the t-f plane. 

4    A Time Frequency Separation Principle 

Let W denotes a m x n matrix,, such that (WA)(WA)H = UUW = I, i.e. WA is 

a m x m unitary matrix (this matrix is referred to as a whitening matrix, since it whitens 

the signal part of the observations and can be obtained from the eigendecomposition of the 
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autocorrelation matrix of the data x(<), see [8] for more details). Pre- and post-multiplying 

the STFD-matrices Dxx(f,/) by W, we then define the whitened STFD-matrices as: 

Bxx(tJ) = WT>xx(tJ)W" (7) 

From the definition of W and Eq.(6), we may expressed Dxx(i, /) as . 

Dxx(«,/) = UDM(i,/)Uw (8) 

Since the matrix U is unitary and T>ss(t,f) is diagonal, expression (8) shows that any 

whitened data STFD-matrix is diagonal in the basis of the columns of the matrix U (the 

eigenvalues of Dxx(<, /) being the diagonal entries of ~Dss{t, /)). 

If, for a (t-f) point, the diagonal elements of Dss(t,f) are all distinct, the missing 

unitary matrix U may be 'uniquely' (i.e. up to permutation and phase shifts) retrieved by 

computing the eigendecomposition of Dxx(f,/). However, when the t-f signatures of the 

different signals are not highly overlapping or frequently intersecting, which is likely to be 

the case, the selected (t-f) point often corresponds to one signal auto-term, rendering matrix 

Dss(f,/) defficient. That is, only one diagonal element of Dss(t,f) is different from zero. 

It follows that the determination of the matrix U from the eigendecomposition of a single 

whitened data STFD-matrix is no longer 'unique' in the sense define above. 

The situation is more favorable when considering joint diagonalization of a combined 

set {Dxx (*,,/,•)({ = l,---,p} of p STFD matrices. This amounts to incorporating several 

(t-f) points in the source separation problem. It is noteworthy that two source signals with 

identical t-f signatures can not be separated even with the inclusion of all information in the 

t-f plane. 
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The joint diagonalization can be explained by first noting that the problem of the 

diagonalization of a single nxn normal matrix M is equivalent to the minimization of the 

criterion C(M, V) =r - J\ |v;Mv,|2 over the set of unitary matrices V = [v,, • • •, vn] (11). 

Hence, the Joint diagonalization of a set {Mk\k — l..p) of p arbitrary nxn matrices is 

defined as the minimization of the criterion: 

C(V) © - £ C(Mh V) = - £ |v?M*v,-| (9) 

under the same unitary constraint. An efficient algorithm for solving (9) already exists in 

[8] and is the generalization of the Jacobi technique [11]. 

5    An example 

Here we present an illustration that involves real data signals.   Two speech signals 

sampled at 8000 Hz are mixed by the following mixing matrix, 

A = 

1.0   0.5 

0.6   1.0 

0.4   0.8 

The kernel used for the computation of the TFDs is the Choi-Williams kernel[10], which 

provide a good cancellation of the cross-terms. Four STFD matrices are considered. The 

corresponding (t-f) points are those of the highest power in the t-f plane. The TFDs of the 

two individual speech signals are shown in Fig.l. Speech 1 and 2 of a male speaker are the 

words "Cars" and "Cats", respectively. The TFDs of the observed speech signals at three 

sensors are displayed in Fig.2. Figure 3 shows the TFDs of the estimated speech signals by 
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TFS. It is clear that TFS works well in this case. The purpose of this example is to test the 

. algorithm when speech signals are used. • 

References 

[1] C. M. Berrah, «Parameter yield estimation for a MOSFET integrated ciruit," in Proc. 1990 

IEEE ISCAS, pp. 2260-2263,1990. 

[2] E. E. Cureton and R. B. D'Agostino, FACTOR ANALYSIS An Applied Approach. Lawrence 

Erlbaum Associates, 1983. 

[3] R. Schmidt, «Multiple emitter location and signal parameter estimation," IEEE Trans, on 

AP, vol. 34, no. 1, pp. 276-280, 1986. 

[4] G. Demoment, "Image reconstruction and restoration: Overview of common estimation struc- 

tures and problems," IEEE Trans, on ASSP, vol. 37, pp. 2024-22036, Oct. 1989. 

[5] C. Jutten and J. Herault, «Detection de grandeurs primitives dans un message composite par 

une architecture de calcul neuromimetrique en apprentissage non supervise," in Proc. Gretsi, 

(Nice), 1985. 

[6] R Comon, "Independent component analysis, a new concept?," Signal Processing, vol. 36, 

pp. 287-314, 1994. 

[7] A. Belouchrani and J.-F. Cardoso, "Maximum likelihood source separation for discrete 

sources," in Proc. EUSIPCO, pp. 768-771, 1994. 

[8] A. Belouchrani and K. Abed Meraim and J.-F Cardoso and E. Moulines. "A blind source 

separation technique using second order statistics," IEEE Trans, on SP, 1996. To appear. 

116 



[9] F. Hlawatsch and W. Krattenthaler, "BHnear Signal Synthesis," IEEE Trans, on SP, vol. 40, 

pp. 352-363, Feb.1992. 

[10] L. Cohen, Time-frequency analysis.. Prentice Hall, 1995. 

[11] G.H. Golub and C.F. Van Loan, Matrix computations. The Johns Hopkins University Press, 

1989. 

117 



so 
23 

MO 

-13 

lO 

3 

30 

23 

MO 

-13 

lO 

3 

Tf^O or «pccch  I 

•y**»<*o.<<a6o*9 « « n° 0 otrtyWs'^n 60 0 0 o e>6 rrr 

i»(Jp£^c»"».M**(foao.«3tf(?tftfc>«ooooot>& 
ntifcj"l';"'"<lt<1tl44VlllKl-i-ri'i"tVmlt-J.        »£»• 

lOOO 2000 3000 IOOO 

TTF"» of Ihe sp««ch 2 

LiE 
'Kl/"-//' 
1 ' -iiUAV*«.!:' 

3000 
Tim« 

30 

i2° 
sr 
£ 10 

Figure 1. TFDs of the individual speeches. 
TFE> of measurement 1 

;siw#$^^ 
1O0O 

wmmmMmmMSä 
2000 3000 „ 4000 TFT> of measurement 2 6000 

6000 

30 

23 

-20 

-13 

■ O 
3 

30 

23 

■JO 
- 13 

IO 

Figure 2. TFDs of the Measurements. 
TKD or cnKmnie or Aj>«««;H   I 

■fl^"«.1 .:—;II;IIIHIIH in 
•owv^ftoti» «&«o< VOOWjt^Q^'öOOOO c oqO 

,5c«»»*op»>p«i»irtiioefiacvc?£?c?tioooooc>p 
man ;   ■<ilniJ44,-i4irill;iv.<.,..._•.     >*i 

2000  3000 *(><>o 

T*-"l> or «nlimiilu .»r Kreuch 2 

AHUIBIIWW- 

I  I CnSäMMii? 

■  ! 
I.!  '■} 

,,   ,Jiif I- 
Figure 3. TFDs of the estimate visual? 

118 



IEEE Workshop on 
Statistical Signal and Array Processing. Portland. Oregon. September 1998. 

TWO-SENSOR-BLIND BEAMFORMER FOR DIRECT SEQUENCE SPREAD 
SPECTRUM COMMUNICATIONS 

Ait\ B<louchranr and Moencii C. Am'in" 

'Department of Electrical Engineering   __ 
Ecole National Pclyteehinque, Algiers, Algen* 

• • Department or Electrical and Computer Engineering, 
Villanova University, YiEanova PA 190S3 USA 

ABSTRACT 

This paper presents an efficient blind beamformer dedi- 
cated to the problem of interference mitigation in direct 
sequence spread spectrum (DSSS) communications systems 
using a two sensor array.  A closed form solution for the 
blind identification of the communication channel b derived 
by exploiting the temporal properties of the desired signal 
end the Interference. Three structures of the DSSS receiver 
are'preseDted.   One structure consists of the blind beam- 
former followed by the spread spectrum demodulator, the^ 
two other structures consist or the spread spectrum demod-' 
ulator followed by the blind beamformer. Simulation results 
are provided to illustrate the effectiveness of the proposed 
algorithms. 

I INTRODUCTION 

Recent development of spread spectrum communications 
and digital beamforming provides a formidable set of tech- 
nologies for jam-resistance syslcsxs. These technologies ere 
compatible and orten used in the same system. The Inte- 
gration or these two technologies can be achieved by cas- 
cading their corresponding processing techniques. That Is, 
the muUidiroension problem can be first translated into a 
single dimension problem via beamforming. where the sen- 
sor array outputs are weighted and added so as to attenuate 
strong jammer signals received by the multisensor antenna 
array. Spread spectrum techniques [1] may then be em- 
ployed to neutralize large numbers or veals jammers that 
may P.ot be totally eliminated by the spatial filtering im- 
plemented by the beamformer. A different order or cas- 
cade is to first apply the spread spectrum techniques at the 
output or each sensor, followed by spatial filtering via the 
beamformer is employed. This paper investigates the per- 
fo-mance of these two approaches. For this purpose, v: 
propose a new beamronr.er dedicated to the problem of a 
single jammer mitigation in DSSS communications systems 
■using a two sensor array, and we implement the correspond- 
ing DSSS receiver according to the two aforementioned ap- 
proaches. 

I!    PROBLEM FORMULATION 

T— DSSS eorr..T.v.niiatiosJ sys:err. vr.izr co-i-ceratior. em- 
p':3vs fci.-.irv p:.5.=cs!iifi-V:eyir.g (3?3K) for boir. chip and 

»V* 

data modulation. An array of 2 sensors receiving signals 
from 2 sources (an l.i.d. desired signal *nd a teraporaEy 
correlated jammer (Til))» is considered. The array output 
vector x(0 Is or dimension 2 x 1 and Is expressed by the 
following low rank model (2). T-r.-..- 

. *(0 = Hy(0 + n(O. y(0 = W0/(0f       0) 
where y(r) i« the signal vector whose entries are *(r) and 
itt) which represent the desired signal and the jammer sig- 
nal.'respeclively. The superscriptT denotes the transpose 
operator. The components ©r n(t) are zero mean tempo- 
rally and spatially white noise processes with variance c 
(H2) H = [hi, hj] is the channel matrix, where hi is the 
spatial signature or the i-th signal which defines the array 
response to the signal direct-path and all Its rauWpeths. 
Th- desired signal, the jammer signal, and the noise com- 
ponents are assumed uncorrelaled (K3). In the baseband, 
the desired signal s(t) has the following form 

where 

m>(0 = 2>?p(t-(l-l)r.) 

(2) 

(3) 

1= (2)-P)> T~l U th: diU (b,i) rale« "nd ^ " lae *£? 
rate. The integer L = T/T« is the number of chips per bit 
(SS processing gain). {&*} and {c\}i-i,_.t represent the fc- 
th bit data sequence and the corresponding chip sequence, 
and p(t) is the chip pulse. The chip sequence is a pseudo- 
random signal which is known by both the transmitter and 
the receiver. 

In the blind context, the identification of the channel ria- 
trix H can be performed only up to a permutation an. a 
scaling factor of its columns. Hence, it is assumed vttnoul 
«ay lass of generality, that: 

(K4) s(0 *--d j{t) are treated as if they have writ vtHsK* 
so that the:.- dynamic range is accounted for ay t.-.e 
nigritude cf the corresponding charine'. vsslsr. 
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WS) The first entries of the channel vectors h*,fc = 1,2 are 
real and positive, i.e., 

hki-hku   hki>0   I: = 1,2 (-1) 

■where the superscript * denotes the complex conjugate 
operator. These conventions are shown to be conve- 
nient in the sequel. 

Ill RECEIVER DESIGNS 

The block diagrams shown in Fig. 1, 2 and 3 illustrate the 
three structures of the proposed spread spectrum commu- 
nication receiver. In Fig. 1, structure /describes a receiver 
which consists of the standard spread spectrum demodu- 
lation preceded by a blind beamformer. The task of the 
beamformer is to fully or partially remove the jammer with 
minimum distortion to the desired signal. This is achieved 
by utilizing the spatial diversity provided by the two-sensor 
array as well as the difference in the temporal characteristics 
of the two signal arrivals. The demodulation process recov- 
ers the original data by despreading the separated desired 
signal, while spreading the background noise and, in partial 
nulling, any jammer component which might have escaped 
to the beamforming output. As depicted in Fig. 2 and 3, 
atrvctvres II and III of the receiver consist of the spread 
spectrum demodulation applied at each sensor followed by 
a blind beamformer. The difference between these two 
structures is in the estimation of the channel coefficients. 
In structure II, the channel coefficients are estimated from 
the observed data directly before despreading, whereas in 
structure III, these coefficients are estimated from the de- 
spreaded data. 

IV    SECOND ORDER CHANNEL 
IDENTIFICATION (SOCI) 

Consider the following sampled version of the data model, 

x(„) = Hy(n)+R{n),   y(n) = [S(n) J(n)]T        (5) 

where, 

• For structures I and II 
x(n) = x(n), n(n) = n(n), l(n) = s(n), and 

5(") = i(") 
■ For structure III 

*(") = ZL *(" " 'M0% fi(") = £,= , *•(" " 'MT. 
I(»)-Eh,'(»-0e(ir.««» 
3(") = Et,i("-'M0- 

In the above expressions, x(n), n(n), s(n) and j(n) are the 
sampled version of x(i), n(0- a(0 and j'W. respectively. 
c(/) is a zero-mean i.i.d. chip sequence and L is the length 
of the chip sequence per information bit. 

The correlation matrices of x(n) is given by, 

R,,,,   =   h,?L2I + /.s?lR3j + ^9I (6) 

R*,i,   =   IhiifVl + VtofLRz + Lfl     (7) 
R,,,,    =   hllhilL'l + h31h3;LRn (8) 

where I is the identity matrix and R„ are defined by 

R„ = £([x(l),. - •, *(W)]T[y(l). -. VWH)      (»> 

where £(.) is the expectation operator, AT is some chosen 
length of data. The above expressions are derived under 
the assumptions (Hl)-(«5), where 

structures I and II 
structure III 

7      /   1      ifstr 
L=\ L if 

Let us define the operators o//(.) and tr(.) by 

o//(M) 
N(N 

««•(M)    -    jf X>« 

(10) 

(11) 

(12) 

where M is any square matrix of dimension N X N and 
Mij are the entries of M. By applying these operators 
to equations (6), (7) and (8), we get the following set of 
equations, 

F, = o/^R*,*,) = h3
3Lcff{K-}) (13) 

F„ = off(Rill3) = h3lh3;Lcf/CR33) (14) 

T, = rr(R,,,t) = />i?I2 + >>2iL+L>* (15) 
T3 = tr{B.s,ia)=\hl3\1'L7 + \h23\

iL + SL (16) 

T,3 = tr{-RisS3) = Kilhl3'V + h3lh33'L (17) 

where |.|* denotes the square modulus. Note that O//(RJJ) 
is an unknown which can be eliminated by combining equa- 
tions (13) and (1). 

From equations (13)-(17), we obtain the following expres- 
sions of the channel coefficients, 

hat 

h33 

An 

■^ 

TxT3 - \T13X>-Lc->{Tx+T3) + Vo\ 

L T3 + T, |/3|* - 2tRc{ß-Ti3} - L<r'(l + W) 
m 

hl3    =    T 

h3lß
m  

i\/7i-/>,?£.-Lcr* 

Tl3-h3
7L0 

I y/Tt - h3\'L - Lc7 

(19) 

(20) 

(21) 

where ß = Fu/Fi and 5Je{.} denotes the real part operator. 
An estimate of the noise variance tr* is needed for a robust 

estimation of the channel coefficients. It can be obtained 
by eigen-decoraposition of the data covariance matrix [3] if 
a third sensor is available. Otherwise, a7 can be estimated 
using only two sensors before transmission begins, i.e. in 
the absence of the spread spectrum signal. Note that in ■ 
practice, the temporal correlation matrices of the data are 
replaced by their time-averages. 

Discussion: 
In addition to reducing the jammer power, the despreading 
in structure III also weakens the temporal coherence of the 
jammer signal while estimating the channel coefficients. For 
high number of chips by bit (L), the despreading operation 
makes the jammer temporally white and, subsequently, the 
values of Fi and Fis in equations (13) and (14) are reduced 
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to zero. Hence, equations (15) to (17) become insufficient 
to lolve the identification problem. In this case, one has 
to use higher order blind identification techniques [4, 5, 6j. 
From this discussion, it is expected. that the asymptotic 
Performance of the SOCI to be better in structures I and II 
than in structure III. 

V    DATA RECOVERY 

In this Section, we compute the optimum beamformer which 
maximizes the signal to interference plus noise ratio (SINR) 
at the output ot the receiver, subject to the unit norm con- 
straint |wja = 1. 

A.    SINR Expressions 
1. Structure I: 

The receiver SINR is defined as the ratio of the square 
of the mean to the variance of the correlator output U 

where U = J2nmt wHx(n)c*(n) and the superscript H 

denotes the transpose conjugate operator. 
The computation of the mean value and the variance 
of the correlator output yields to 

(23) \E[U)\*    =    Z'iwwh,!2 

Var[U)    =     jr.flw'hal* + |w|V) (24) 

Hence, the correlator SINR is given by 

£|wwh,|* 5fAT.fi/ = 
jwWh2p +-|w|*<r* 

(25) 

2. Structures II and III: 
At the output of the beamformer,  the SINR corre- 
sponding to structures II and III is given by, 

£|wWh!|2 

SINRir = SINRm = 
|w"h2p ■+ |w|V 

(26) 

3. Comments: 
According to equations (25) and (26), the two struc- 
tures lead to the same asymptotic SINR if the same 
optimal array weights are used in the three structures. 
In practice, the optimal weights of structures I and II 
are computed from the same estimates of the channel 
coefficients. Therefore, these two structures have the 
same performance. 
If K denotes the sample size at the input of the re- 
ceiver, structures I and II estimate the channel coef- 
ficients using K sample data, while, structure II esti- 
mated these same coefficients using K/L sample data. 
Note also that the input SINR per bit or per chip is 
the same for the three structures. Accordingly, for a 
same setting, the estimation error on the array weights 
of structure III is expected to be higher than the corre- 
sponding error of structures I and II. Hence, receivers 
of structures I and II should have better performance, 

■ but higher numerical complexity than the receiver of 
structure III. 

'Note that this definition is consistent herein only because the 
variance of the data bit sequence is zero over the chip length. 

B.    Optimum array weights 

The optimum array weight vector in the sense mentioned 
above is given by, 

Llw^h 1* 
*V, = Argmax |wWhap + |w|V    ***ct *• M' = I 

The solution to the maximization problem (27) is given by 

**?• vT+K 
:[1°]7 

(28) 

with 

o=^-*-;»;;, A=A,,*., - *. .*»   (29) 
«llO-   — t>2tt^ 

In practice, the channel vectors hi, hj and the noise vari- 
ance e1 are replaced by their estimated values. 

VI    PERFORMANCE EVALUATIONS 

Consider an array of two sensors separated by half a wave- 
length. In addition to the DS/SS signal, the array receives a 
jammer through three paths. The desired signal is a BPSK 
signal arriving at $$ = 0°.  The jammer is composed of a 
chirp signal whose frequencies are wi = O.lr and wj = 0.6r. 
The direct path of the jammer arrives at Si = 2* whereas its 
multipath arrive at tfj = 10° and 9j = —10*. respectively. 
The noise used is zero-mean white complex Gaussian pro- 
cess. The value N in equation (9) is chosen to be equal to 8 
and 100 data bits are considered. The SINR at the output 
of the decorrelator is estimated over 100 Monte-Carlo runs. 

Figures 4 to 5 show the SINR in dB when the beam- 
former is enabled (either using SOCI or JADE according to 
the three structures I, II and III) and when the beamformer 
is disabled. In Figures 4, the SINR is plotted against SNR 
for a JSR or 30 dB and for 4 chips/bit '. According to Fig- 
ure 4, receivers I and II, which have the same performance, 
perform better than receiver III as expected. Figures 5 dis- 
plays the SINR versus the number of chips/bit for a JSR of 
10 dB and for 0 dB SNR. From Figure 5, we see that for 8 
chips/bit, the proposed receivers achieve the same perfor- 
mance as the despreader when used alone for 128 chips/bit. 

VII    CONCLUSION 

In this paper, we have proposed an efficient two-sensor array 
blind beamformer for single jammer mitigation in spread 
spectrum communications systems based on second order ■ 
statistic blind identification of the channel coefficients which 
exploits the temporal properties of the spread spectrum sig- 
nal and the jammer. Three structure designs of the miti- 
gation receiver were suggested, where structure III is less * 
robust than structures I and II. The second order chan- 
nel identification (SOCI) was compared to the high order 
identification technique *JADE". Simulation results were 
provided for multipath and coherent signal environment. 

'The choose of 4 chips/bit in «his simulation is just for 
illustration. 
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Figure 3. The jammer mitigation system: structure III. 

Figure 4.   SINR at the correlator output in dB vs SNR for 
JSR= 30 dB and 4 chips/bit. 

Figure 1. The jammer mitigation system: structure I. 

Figure 2. The" jammer mitigation system: structure II. 
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Figure 5. SINR at the correlator output in dB vs chips/bit for 
SNR= 0 dB and JSR= 10 dB. 
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ABSTRACT 

,„ .„Mantaneous li.,ar ,mxl..rr of .he source >.gnal>._I h' ^'J 0^w<, of |he mislure slructure. So far. 
., r.,,.«-ring the oriRi..»l waveforms of the source ««^' ™> ^S information available on the source 
„,.. ,,tW,m of the blind source "P"»'™ h» *« ^  0V      "g a    b"ed on time-frequency representations 

Koy Word. Bund „«re« «p.r«»n. Tim-F«,««*, ,epr^r,u,ior.. Join, »gn.l «p«*m»lio». Sp..i.l 

j,„„, .Arbitrary Yamulc Diilribution». Joint d.agon»li!suon. 

1    INTRODUCTION 

of ,1«. »ppli«.ir. <l« mU,'ldm'"?l"!Ä'h^X '"„ ST^1tet,i».l sign»! b«bie™d „singer 

i^^dr^^ 
|.|,e«. «ime-frequency distribution and synthesis, transform domain analysts, etc. 

■,„ someother applications, the muiwdircjnsional signal **™%^^^^ ^^ 
such as the number of sources and ihejr d.rect.ons of arrnaK   Sub pace ba.ed ^        P . 

i^rmation.vhich is provided by the muI rf^Ma,^^h^el5« ^„S signal parameters are th«a 
,|,e exact moments of the data, commonly the data com an« mat^T e^«« ; le

P
momenU instead c, 

r«r.«ed by solving «he geometncal relat.on .n ™e W™™*»^ h"frequent content of the measured 
,.,, «act ones. These methods assume stauonary^ Akho^gh    hen h  f  q ^ ^ ^ ^ 

:;;:;: ;;^Ä^ - -sisnifica,u,y improve performan~ 
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The proposed paper develops a new concept which exploits the geometrical relation which no longer involves 
the exact moments of the data but rather their Spatial Joint Arbitrary Variable Distributions. The spatial 
ioint arbitrary variable distribution (SJAVD) is a generalization of the arbitrary variable distribution to a vector 
signal A particular case is the spatial time frequency distribution (STFD) where the two arbitrary variables 
ar°e time and frequency. In a previous research, the authors have used successfully the concept of STFD to 
solve the problem of blind source separation for nonstationary signals.1 The STFDs belong to the general class 
of Cohen. An alternative solution is to introduce the Spatial Hyperbolic Class of Quadratic Ttme-Frequency 
Representations.1 

In this paper, we study the application of this new concept of spatial signal representations to the problem of 
blind source separation. 

2    THE BLIND SOURCE SEPARATION PROBLEM 

In several applications such as semiconductor manufacturing process,3 factor analysis/ narrow-band signal 
processing,5 and image reconstruction,6 one has to process multidimensional observations of the form: 

x(t)=y(t)+n(0 = As(i)+n(t), (1) 

where x(t) is a noisy instantaneous linear mixture of source signals. This model is commonly used in the field or 
narrowband array processing. In this context, the vector s(f) = (*i(0 «»(Of consists of the signals emitted 
by n narrowband sources; whereas the vector x[t) = [xtf) xm(t))T contains the array output. Both vectors 

ampled at time t. Matrix A is the transfer function between the sources and the array sensors. are s 

The problem of the blind source separation consists then of recovering the original waveforms s(r) of the 
sources without any knowledge of the mixture structure A. So far, this problem has been solved using statistical 
information available on the source signals. 

The first solution to the source separation problem was proposed almost a decade ago7 and was based on 
the cancellation of higher order moments assuming non-Gaussian and i.i.d source signals. Since then, other 
criteria based on minimizations of cost functions, such as the sum of square fourth order cumulants, " contrast 
functions9-11 or likelihood function,12 have been used by several researchers. Note that in the c^erf non i.i.d 
source signals and even Gaussian sources, solutions based on second order statistics are possible.   • 

In the sequel, we propose to take advantage of the nonstationarity property of the signals to be separated. 
This is done by resorting to the powerful tool of joint signal representations. 

3    SPATIAL ARBITRARY VARIABLES DISTRIBUTIONS 

There are several approaches to define joint-variable distributions.15"19 In this section, we only focus on the 
characteristics function operator method discussed by Cohen.20 

Suppose we have two variables a and b associated with the Hermitian operators A and B, respectively. We seek 
a joint distribution D(o, 6) that indicates the energy content of signals in terms of both a and 6 simultaneously. 
The characteristic function for a and b is given by20 

M(a,ß) =< e>B*+'5* >= f f ei
aa+>i3bD{a,b)dadb (2) 
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Hence by Fourier inversion, we have 

D{a.b) =< e
joe-:ib >= J jM[Q.3)e.-ia'-iShdadß (3) 

As presented in,30 M[a,3) can be computed from the signal by averaging the characteristic function operator 
M{a. 3) by way of 

M[o,ß) =<M[o.ß) >= Jx'(t)M{a,ß)x{t)dt (4) 

The previous equation leads to, 

D(a,b)= f f f x'{t)M(a,ß)x(t)dtdadß (5) 

The characieristic function operator M[a,ß) is formed by combining exponentiated versions of the Hermilian 
operators A and B associated with the variables a and b. There are many possibilities for orderings of eJ<"* and 
eJ'i"} in M(a,ß). To handle the possible orderings, one can choose one particular ordering and introduce a kernel 
function o[n,ß) to generate the remaining ones. This leads to a general class of joint distributions of the variables 
a anil h. For a specific ordering 

M{a,3) = 6{a,ßWoA+ifi0 (6) 

Tin- discrete form of the aforementioned joint arbitrary variable distribution (JAVD), for signal x(i), is given 
by 

CO 

D„(n,4)=     Y,     ö{m,l)x-{t)M{m,l)x[t)e-
jm-:>'1' (7) 

The cross-AVD of two signals X)(t) and r;(f) is defined by 

DIlT7{a,b)=   ■ f;     6[m,l)x'3{l)M{m,l)Xl(t)e-ima-^ (8) 
f.l.m=-:c 

Expressions (7) and (8) are now used to define the following data spatial joint arbitrary-variable distribution 
(SJAVD) matrix, 

D„(a,6) =     f;     c5(m,/)x(0-M(m,/)x-(Oe--''me-i'6 (9) 
f,l.m=-so 

where |D„(o, b)){j = DZiXj{a, b),   for i,j = 1: • • •, n. 

Under the linear data model of equation (1) and assuming noise-free environment, the SJAVD matrix takes 
the following simple structure: 

D„(a,6) = AD„M)AH (10) 

where D„(o,6) is the signal JAVD matrix whose entries are the auto- and cross-JAVDs of the sources. We note 
that D„(a,6) is of dimension m x m, whereas D„(a,t) is of n x n dimension. For narrowband array signal 
processing applications, matrix A holds the spatial information and maps the auto- and cross-JAVDs of the 
sources into auto- and cross-JAVDs of the data. 

In general terms, since the off-diagonal elements of D„(a,&) are cross-terms, then this matrix is diagonal 
for each arbitrary variables (a,b) point which corresponds to a true power concentration, i.e. signal auto-term. 
In the sequel, we consider the (a:b) points which satisfy this property. In practice, to simplify the selection of 

. auto-terms, a smoothing kernel 4>(m,\) in M(m,l) can be applied to significantly decrease the contribution of the 
cross-terms in the a-b plane. 125 



It is important to note that expression (10) is similar to that which has been commonly used in blind source 
separation and direction of arrival (DOA) estimation problems, relating the signal correlation matrix to the data 
spatial correlation matrix. 

3.1    Cohen Class 

The discrete-time form of the Cohen's class of time-frequency distributions (TFD) for signal x[t) is provided 
by choosing a and b to be time and frequency variables, and A and B in (6) to be the time and frequency 
operators, respectively. This class is given by20 

£>„(!,/)=    J    t(m,l)x(t + m + l)x'(t + m-l)rW (11) 
(,m=-eo 

where t and / represent the time index and the frequency index, respectively. The kernel 6[m, I) characterizes 
the distribution and is a function of both the time and lag variables. The cross-TFD of two signals ii(t) and 
x;(t) is defined by 

DtlX,(t,f)=    £    ^m,l)xl{t + m + l)x-2(t + m-l)^i^' ■   (12) 
/,m=—eo 

Expressions (11) and (12) are used to define the following data spatial time-frequency distribution (STFD) 
matrix, 

oo 

Dxx(t,/) =    ]T    <>>{m,l)x(t + Tn + l)x-(t + m-l)c->A'" (13) 
ffm= — oo 

where [Dxx(i,/)];,- = Dz.Zj(*,/),   for  i, j = !,-• -,n. 

As the SJAVD, the STFD verify under the model (1) relation (10), i.e. 

Dxx(f,/) = AD„(r,/)Aw (14) 

Note that the STFD is a particular case of the SJAVD, where the Hermitian operators A and B are the 
operators T = < and >V = £, respectively.20 

3.2    Hyperbolic Class 

The discrete form of the Hyperbolic class of time-frequency distributions (HTFD), for signal x{t), is given by2 

T„{t,f)=t    J2   ^(^,y')A'{n,)X"(0e"J2"/",(m/,) (,5) 
'   m./=-eo       ' ' 

where <j>(m, /) is a 2-D kernel function which is independent of the signal, A'(/) is the Fourier transform of x{t) 
and /r is a fixed reference frequency (or normalization) which is needed to obtain the correct physical dimensions. 
The cross-HTFD of two signals XJ(I) and x2(<) is defined by 

T«[t,f) = J    £   ö(fjm,f-jl)X,{m)Xl[l)t-^'^m'1' (16) 
TTl,t — -*GO 
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Expressions (15) and (16) are now used to define the following data spatial hyperbolic time-frequency distri- 
bution (SHTFD) malrir. 

T„(l./) = £    £    9(£rn£/)X(m)X-(/}e-'2*'>'n<™/'> (17) 
*   m,l=-o»       ' ' 

where [T„{t,f)];j = Tt,Xi{t,f),   for  i,j= 1,- -,n. 

Under the model (1), the SHTFD also verify relation (10), i.e. 

T„(ttf) = AT„{t,f)A" (18) 

4    THE BLIND SOURCE SEPARATION ALGORITHM 

Let W denotes a m x n matrix, such that (WA)(WA)" = UUH = I, i.e. WA isamx in unitary matrix 
(this matrix is referred to as a whitening matrix, since it whitens the signal part of the observations). Pre- and 
post-multiplying the JAVD-matrices D„(o,l) by W, we then define the whitened JAVD-matrices as: 

D«(o,6) = WD„(a,6)W" (19) 

From the definition of W and Eq.(lO), we may expressed D„(a,t) as 

D„(a,6) = UD„(a,6)Uw .(20) 

Since the matrix U is unitary and D„(a, b) is diagonal, expression (20) shows that any whitened data SJAVD- 
matrix is diagonal in the basis of the columns of the matrix U (the eigenvalues of Dxx(a,i) being the diagonal 
entries of D„{a, &)). 

The unitary matrix U is to be distinguished from the unitary transform19 that could be used in place of the 
characteristic function operator method discussed in the previous Section for introducing joint-arbitrary variable 
distributions, for joint variable signal representation, the unitary transformation operates on the data in the 
temporal domain whereas matrix U in (20) is developed for spatial processing. 

If, for the (a,,*>,) point, the diagonal elements of D„(o,-,6,) are all distinct, the missing unitary matrix U 
may be 'uniquely' (i.e. up to permutation and phase shifts) retrieved by computing the eigendecomposition of 
D«x(oi.*i)- However, when the a-b signatures of the different signals are not highly overlapping or frequently 
intersecting, which is likely to be the case, the selected (a,-,5,) point often corresponds to a single signal auto- 
term, rendering matrix D„(a,-,t.) deficient. That is, only one diagonal element of D„(a,-,&,) is different from 
zero. It follows that the determination of the matrix U from the eigendecomposition of a single whitened data 
SJAVD-matrix is no longer 'unique* in the sense defined above. The situation is more favorable when considering 
simultaneous diagonalization of a combined set {D„(a,-;*.•)!« = 1, • • -,p} of p SJAVD matrices. This amounts to 
incorporating several a-b points in the source separation problem. It is noteworthy that two source signals with. 
identical a-b signatures can not be separated, even with the inclusion of all information in the a-b plane. 

Joint diagonalization:   The joint diagonalization" can be explained by first noting that the problem of the 
diagonalization of a single nxn normal matrix M is equivalent to the minimization of the criterion 

C(M,V),T-5>;Mv,f (21) 



over the set of unitary matrices V= [v1(---,vn]. Hence, the joint diagonalization of a set {Mv|A- = 1..K] of A' 
arbitrary n x n matrices is defined as the minimization of the following JD criterion: 

C(V)^r-^C(MA>V) = -^KMfcv,P (22) 
k ki 

under the same unitary constraint. An efficient joint approximate diagonalization algorithm exists in14 and it is 
a generalization of the Jacobi technique21 for the exact diagonalization of a single normal matrix. 

4.1    General Conditions on Joint-Variables Representations 

The idea of introducing a set of variables different than time and frequency in the underlying blind source 
separation problem is stemed from the fact that improved performance may well be achieved by incorporating 
spatial and temporal matrices in equation (20) which correspond to new variables a and b. 

It is clear from (22) that from a perspective of the joint diagonalization techniques, an attractive joint-variable 
distributions are those which allow the formation of non-singular diagonal matrices Daa(a,b) at the prospective 
joint-variable points. This property should be viewed in light of the following obersvations: 

1. The off-diagonal elements of £>„(a, 6) should be zeros, and as such, distributions that mount the cross-tenus 
on the top of auto-terms should be carefully studied and re-examined for qualification under the proposed 
application and within the above frame work. 

2. Joint-variable distributions that spread cross-terms over the entire joint-variable plane should, using the 
same argument, lead to improved performance over those distributions which localize the cross-terms in the 
auto-term regions. 

3. Joint variable distributions which reduce, but still localize the cross-terms away from the auto-tcnn regions 
appear to be most applicable to the diagonal matrix requirements. 

4. The joint-variable signatures of the sources, although remain distinct, should intersect as often as possible, 
producing a large number of candidate points. 

5. Joint-variable distributions which reduce the noise variance are of significant importance, as they lead 
eventually to reliable separation and reconstruction of the source signals.22-23 

It is noteworthy that in the time-frequency plane, t-f distribution kernels which handle cross-terms differently 
in terms of their smoothing and localizations have already been devised. The ZAM,24 Choi-Williams.2* and 
Born-Jordan kernels20 are good examples of how time-frequency kernels differ in cross-term mitigations. These 
kernels should be investigated to show their possible distinct offerings in the blind source separation contexi. 

4.2    The Identification Procedure: 

Equations (10-22) constitute the blind source separation approach based on SJAVD which is summarized by 
the following steps 

• Determine the whitening matrix W from the eigendecompositiori of an estimate of the autocorrelation 
matrix pf the data (see14 for more details). 
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Spec* I 

Figure 1: Plots of individual speeches. 

Determine the unitary matrix Ü by minimizing the joint approximate diagonalization criterion for a specific 
set of whitened SJAVD matrices {Dxx(o,,t,)|i = 1, - • -,p}, 

Obtain an estimate of the mixture matrix Ä as Ä = W*0, where the superscript # denotes the pseudo- 
inverse, and an estimate of the source signals s(i) as s(i) = ÜwWx(i). 

5    ILLUSTRATION 

In this section, we consider the Cohen class to illustrate the feasibility of the proposed method. 

Example .1   This example deals with real source signals. Two speech signals sampled at 8000 Hz are mixed by 
♦w n    • . •     *      r 10   0.6   0.4 V the following mixing matrix, A=     ..    . Q   « g I  • 

The plots of the two individual speech signals are shown in Fig.l. Speech "1" and "2* of a male speaker are the 
words "Cars" and '"Cats", respectively. To assess the robustness of the TFS algorithm with respect to noise, we 
corrupt the mixed speech signals by an additive white Gaussian noise and we compare in Fig.2 the performance 
of the second order blind identification (SOBI) algorithm proposed in14 and the TFS algorithm over [0 - 20 dB] 
Tange of signal-to-noise ratio (SNR) in terms of the overall rejection level of the sources in each other.14 The 
mean rejection levels are evaluated here over 100 Monte-Carlo runs with T = 6084 samples. It is evident from 
Fig.2 that, in this case, the TFS algorithm outperforms SOBI algorithm. The increase of this robustness of the 
TFS algorithm with respect to noise may be explain by.tbe,effect of spreading the noise power and of localizing 
the source energy in the time-frequency domain. 
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IS        2C 

Figure 2: Performance of SOBI and TFS algori:hms vs SNR. 

Example 2 In this example, we consider a uniform linear array of three sensors having half wavelength spacing 
and receiving signals from two sources in the presence of white Gaussian zoise. The sources arr.ve from different 
directions & = 0 and 4>2 = 20 degrees (the particular structure of the array manifold is of course not exploited 
here). The source signals are generated by filtering a complex circular wbhe Gaussian processes by an AR model 
of order one with coefficient <z, = pexp(y2rr/,(0) and a2 = pexp(j2 «/->(/ •'• where we have: 

/i(0    = 

P 

■I 
0.0625   for t = 1 : 400 
0.1250   for t = 401 :450 
0.3750   for t = 451 : 850 

!      0.3750 for I = 1 : 4)0 
0.1250+ Sf fort = 401: 450 

0.0625 for < = 451 : 550 

0.85 

The signal to noise ratio (SNR) is set at 5 dB. The kernel used for the computation or the TFDs is the 
Choi-Wilirams kernel20 , which provides a good reduction of the cross-terms. For the TFS algorithm, eight TFD 
matrices are considered. The corresponding t-f points are those of the hiebest power in the t-f domain. The mean 
rejection level is evaluated over 500 Monte-Carlo runs. 

Table 1 shows the mean rejection level in dB versus the 'spectral shift" Sf both for SOBI algorithm14 and 
TFS algorithm. Note that for Sf = 0, the two Gaussian source signals hive identical spectra shape. In this case, 
while SOBI fails 1 in separating the two sources, TFS succeed. Note also :hat in contrast to SOBI, TFS presents 
constant performance with respect to Sf. 

>\Ye admit that a source separation algorithm fails when the mean rejection leve! L« «reater thar. -10 dB. 
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Spectral shifl (6JJ Mean Rejection level in dB 
SOBI TFS 

0.000 -8.86 -12.22 
0.002 -10.01 -12.21 
0.010 -10.18 -12.34 
0.050 -11.09 -12.53 
0.200 -12.92 -12.54 

Table 1: Performance of SOBI and TFS algorithms vs Sf 

6    CONCLUSION 

In this paper, the problem of blind separation of linear spatial mixture of non-stationary source signal based on 
arbitrary variable distributions has been investigated. A solution based on the diagonalization of a combined set 
of spatial arbitrary variable distributions has been proposed. The concept of the spatial joint signal representation 
is introduced. This concept should prove to be very valuable in multisensor signal analysis and lead to improved 
performance in the field of array signal processing. Numerical simulations have been provided to illustrate the 
feasability of the proposed method. 
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Abstract 
In this paper, a new approach based on blind source sep- 
aration techniques is proposed to solve the problem of 
interference mitigation in direct sequence spread spec- 
trum communications systems. This approach strives to 
separate the interference from the desired signal and as 
such produce the spread spectrum signal with reduced 
jammer contamination. The proposed method is robust 
under muhipath and array imperfections, and therefore, 
is most applicable to coherent arrivals and uncalibrated 
arrays. The paper presents the performance analysis and 
evaluation of the spread spectrum receiver incorporating 
the blind source separator. Closed form expressions of 
the receiver SNR and the corresponding improvement 
factors due to the proposed preprocessing scheme axe 
derived. Simulation results are provided to illustrate the 
effectiveness of the blind source separation-based inter- 
ference mitigation approach. 

I.    Introduction 

Code division multiple-access (CDMA) using direct- 
sequence spread spectrum (DS/SS) signaling is among 
the most promising multiplexing technologies for cellu- 
lar telecommunications services, such as personal com- 
munications, mobile telephony, and indoor wireless net- 
works. The advantages of DS/SS for the aforementioned 
services include superior operation in muhipath environ- 
ments, increased capacity in bursty or fading channels, 
flexibility in the allocation of channels, the possibility 
to operate asynchronously, and the ability to share band- 
width with narrowband communication systems without 
affecting the performance of either systems. An DS/SS 
system can be defined simply as one in which the trans- 
mitted signal is spreaded over a bandwidth much wider 

This work is supported by Rome Lib. NY. conusct # F306O2-96- 
C-0077. 

than the minimum bandwidth necessary to transmit the 
information [1], by means of a code independent of the 
data. The availability of this code at the receiver en- 
ables despreading and recovery of data, while spread- 
ing and suppression of interference. The processing gain 
of an DS/SS system, generally defined as the ratio be- 
tween the transmission and data bandwidths, is a mea- 
sure of its interference rejection capability II). This in- 
herent ability of DS/SS systems 10 suppress interference 
is significantly enhanced when a complementary inter- 
ference rejection techniques (2| is incorporated. These 
techniques have been first developed for military appli- 
cations as a means to combat hostile narrowband jam- 
ming of the DS/SS signal, but they can also be used to 
mitigate the effects of unintentional narrowband interfer- 
ence caused by co-existence with conventional commu- 
nications as well. The use of these techniques allows 
the CDMA users to communicate reliably with much 
less power than would otherwise bo required in the pres- 
ence of the narrowband users, and therefore increases the 
value for the maximum number of CDMA users that can 
be tolerated, with an acceptable level of degradation for 
the narrowband users. 

In this paper, an approach for interference rejection 
based on blind source separation techniques is intro- 
duced. These techniques operate on the mixture of the 
desired and undesired signals at the array outputs to sep- 
arate the DS/SS signal from the interference and its mul- 
tipart». Blind source separation schemes [3, 4, 5) are 
known to be robust under muhipath, sensor displace- 
ment, and array imperfections, and as such, they out- 
perform adaptive array interference nulling algorithms 
when applied to coherent arrivals and uncalibrated ar- 
ray». Upon separation, the desired signal has to be iden- 
tified for postprocessing, i.e.. despreading. Several mea- 
sures can be used in this regard, including direction.- 
of-arrival. bandwidth, and spectra! characteristics. Tr. 
overall interference rejection DS/SS system is there:'-«v 
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-. r-mposcd of a separator, selector, and a correlator fol- 
•. wed by a detector. Closed form expressions of the im- 
provement of the receiver SNR for a two-sensor array 
:irc derived and Monte-Carlo simulations of the bit error 

■ rate (BER) curves illustrating the performance improve- 
ment of the proposed scheme for correlated arrivals are 
presented. 

II.   Problem formulation 

A SS communication system which employs binary 
phase-shift-keying (BPSK) for both chip and data modu- 
lation is considered. We consider also an array of n sen- 
sors receiving signals from two sources (a desired signal 
and a narrowband jammer). The array output denoted by 
x(/) is a n x 1 random vector. In the presence of spa- 
tially independent additive noise w(i), the narrowband 
data model is given by: 

x(i) = Ay(0 + w(0,  y(0 = [*(«) j{t))T      (1) 

where y(t) is the signal vector whose entries s{t) and 
j(l) are the desired signal and the jammer, respectively. 
The superscript T denotes the transpose operator. The 
two waveforms 5(1) and j(l) are assumed to be statisti- 
cally independent. The baseband spread spectrum signal 
-v(f) has the following form 

CO 

s{t)=   Y,   hmk{t-kT), (2) 
*=-co 

where 
L 

"»*(0 = £cfr(*-('-i)r«) O) 

In (2)-(3), T'1 is the data (bit) rate, and 7V"1 is the chip 
rate. The integer L = T/Tc is the number of chips per 
bit (SS processing gain). {6*} and {cf }/=i,...,i. repre- 
sent the Ar-th bit data sequence and the corresponding 
chip sequence, and p(t) is the chip pulse. The chip se- 
quence (the PN spreading code) is a pseudo-random sig- 
nal which is known by both the transmitter and the re- 
ceiver. 

The matrix A, which in general corresponds to the 
steering matrix, is assumed to be full column rank, but 
otherwise is unknown in structure. 

III.   The proposed system 

The block diagram shown in Fig.l illustrates the pro- 
posed spread spectrum communications system. The 
standard spread spectrum demodulation is augmented by 
a preprocessor, which consists of a separator followed by 

a selector. Tbc separator acts on separating the interfer- 
ence from the signal by utilizing the spatial diversity pro- 
vided by the multi-sensor array. This separation can be 
performed only up to a permutation (see below). Hence, 
a selection device is needed to label the separated wave- 
forms as signal and jammer. The demodulation process 
recovers the original data by despreading the selected 
(desired) signal, while spreading the background noise 
and any interference component which might have not 
been separated from the signal. In the following, we de- 
scribe each processing step in details. 

A.   Separation 

The separation of the signal from the interfer- 
ence is achieved by using blind source separation tech- 
niques. These techniques strive to recover the source 
vectory(l) from the array output x(i) without the knowl- 
edge of matrix A. The blind source separation tech- 
niques are based on the assumption of statistical inde- 
pendence of the source signals. 

Various algorithms have been proposed for the blind 
source separation [3, 6, 7, 8]. In this paper, we only fo- 
cus on the so called SOBI (Second Order Blind Identifi- 
cation) algorithm [8J. This algorithm is based on the si- 
multaneous diagonalization of a combined set of spatio- 
temporal correlation matrices of the received signals (for 
more details see reference [8]). 

It is well established that there is two inherent am- 
biguities in the blind source separation problem. First, 
there is no direct or indirect way of knowing the origi- 
nal labeling of the sources, hence any permutation of the 
estimated sources is also a satisfactory solution. The sec- 
ond ambiguity is that it is impossible to uniquely identify 
the source signals. Hence, the blind source separation is 
a technique for recovering of the source signals up to a 
fixed permutation and complex scalar multiplication. 

B.   Selection 

Because of the inherent ambiguity stated above, a selec- 
tor at the output of the separator is necessary to identify 
the desired signal for postprocessing. For this purpose, 
several strategies can be considered. The selection can 
be based on the signature of the desired signal which 
may be known by the receiver. As such, the problem of 
the selection becomes a pure problem of signal classifi- 
cation [9, 10]. Other strategies can be based on some 
a priori knowledge of the desired signal; for example 
its directions-of- arrival (DOA). In this case, the com- 
ponent whose steering vector in A matches the signal 
DOA is taken as the SS signal. The selection can also 
be based on the relative power of the separated signals. 
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which makes use of the fact that the jammer has often a 
higher power than the spread spectrum signal. formed. 

i taiaa 

Figure 1: Spread spectrum system using blind source 
separation. 

C.    Spread Spectrum Demodulation 

This last step consists of despreading the selected signal 
for recovering the original data bit sequence {&*}. This 
is accomplished by the correlation of the received sig- 
nal with a synchronized replica of the spreading signal 
{cf }(=i,---,£ used to spread the information. While the 
correlator despreads the desired signal, it spreads any in- 
terference components which might have escaped to the 
desired signal in the separation process. 

Without interference rejection schemes operating in 
conjunction with the DS/SS system, the demodulation 
process improves the signal-to-interference and noise ra- 
tio at the receiver by an amount defined as the processing 
gain (PC). The later is the ratio of the spreading band- 
width to the desired signal information bandwidth (base- 
band), 

PG = 
Spreading Bandwidth        _ T 

Information Signal Bandwidth      Te 

Since both the spatial diversity and the blind source sep- 
aration should yield improved performance, we consider 
in the next section, three receiver SNR improvement fac- 
tors: 

1. The improvement in the receiver SNR, V\, by using 
a two-element array without SS signal/interference 
separation over one-element array. 

2. The improvement in the receiver SNR, 1/2, by us- 
ing a two-element array with SS signal/interference 
separation over one-element array. 

3. The improvement in the receiver SNR, v$, by us- 
ing a two-element array with SS signal/interference 

IV.   Analysis 

Throughout the following analysis, the additive noise 
is assumed to be a zero mean white Gaussian complex 
circular process with variance a\. The desired signal 
s{t) and the jammer j(i) are treated as if they have unit 
power. The actual dynamic range of both waveforms 
are accounted for by the magnitude of the correspond- 
ing columns of the steering matrix A. Hence, matrix A 
has the following structure: 

*-[*>■ .>,] «> 
where a\ and ej represent the powers of the signal s(t) 
and the jammer j(t), respectively, and 6, and 0j are their 
corresponding directions-of-arrival. 

Further, in the analysis herein, we assume the trans- 
mission of the information bit "1" , i.e., s(n) = c(n), 
and a narrowband jammer of (he form: 

j(n) = «*"+*, (5) 

where u is the jammer frequency and the phase ^ is a 
uniform random variable. 

The receiver SNR is defined as the ratio of the square 
of the mean to the variance of the correlator output U 

where 

f = X>(n)c(n)\ (7) 
n = l 

In the above equation, r{n) is the sampled version of 
the correlator input, c(n) is a zero-mean complex circu- 
lar i.i.d. chip sequence such that |c(n)|2=l and L is the 
length of the chip sequence per information bit. Note 
that the decision of receiving I or -I is based on the sign 
of the real part of U [ 12]. 

A.   Pre-processor Disabled 

When no DS/SS signal-interference separation is per- 
formed, the input to the correlator (the received signal) 
is the average of the sensor outputs, 

»•(") = jfrM + xaMJ (8) 
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In this case, the computation of the mean value and the 
variance of the correlator output (7) yields to. 

L. ,. 

(9) 

Var[U)   =    -[<7?(1+ €03(0;))+cl]     (K» 

Hence, the correlator SNR is given by 

SNR.JJ = (1+cos (£,))£, 
(l + cos(ej))JSR+^m 

(11) 

where JSR and SNR are the jammer-to-signal and 
signal-to-noise ratios, respectively. 

Since (8) amounts to a beamformer with unit coeffi- 
cients, then, for a given jammer position, the correlator 
SNR reaches a maximum value for a broadside desired 
signal arrival. Adversely, SNRoJJ reaches a minimum 
value for a given DOA of the desired signal when the 
jammer DOA is perpendicular to the array. 

Since the correlator SNR using only one array sensor 
and without applying any auxiliary interference excision 
scheme is 

SNRmt = _     L'* 
JSK+rkt 

(12) 

Then, the correlator SNR improvement factor achieved 
via the use of two-sensor anay is, in essence, the array 
gain. 

SNRcne       (l+cos(^))J5Ä+5^ 

whose maximum value is vx ss 2, i.e., 3 dB improve- 
ment. 

B.   Pre-processor Enabled 

When the SS signal/interference separation is per- 
formed, the correlator input is the selected signal 

r(n)    =   s(n) 

=    [A-'xfn)), 
=   (Ä-'Ajn^nJ-KÄ-'Aj.^n) 

+{[Ä-,A]„[A-,J]I + [Ä^AjjjfA-1],,} 

«HO»)+ {[*-> AjnlA-1],, 
+[Ä-1A]12[A-I]„}u>2(n) (14) 

The mixing matrix Ä is estimated by the SOBI algorithm 
using K correlation matrices. In the following analysis, 
we make use of the performance study of SOBI algo- 
rithm as derived in [8J. Hence, at the first order approxi- 
mation, we have: 

[Ä-'A],,   w   1 (15) 

[A-'A),,  % (16) 

£     $i§lA"l'R<*>A",*)>rf17> 

where 

P   =    [PW-,PK] (18) 
Pk   =   E\j[n)j(n-hy}, *r = l....,A'(19) 

SR(k)   =   R(*)-R(*) (20) 

with 

1   L 

*(*) = jE^w»-*)"      (2D 
R(*)    =    E[x(n)x(n - k)') 

=    AA",  for k ? 0, (22) 

In this case, the derivation of the mean value and the vari- 
ance of the correlator output (7) yields to the following 
expressions, 

E[U)   =    L-\ (23) 

Vor[U)    =    7o+7i<^+720-i + 73<£    (24) 

where 

70    =    l—L 

7i    = 
1 

72   = 

i 1 
<r?(l - «>*(*,-<?,-))[1 + 7I{L ~ l + 2K} 

LX 2cr* +2 

1 1        «r? 1 
c](i-tos(e,-ej))^2K + 4(1 + 2Är} 

(3 + cos(<?,-g,)) 
4A' " 

-EF^ + ^ + ^ + ÄMJ- 

 L___rJ_fJi1    £ 
<r?(l - cos (0, - tf,))312A- <r? tX ~ L 

+ 2#  " 

From (23) and (24), the correlator output signal-to-noise 
ratio is 

73    = 

SNRm = (i-1)3 

7o + Hici + 72*1 + 73<r, 
(25) 
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It is noteworthy that the above analyses still hold for co- 
herent arrivals. In this case, the vector [<rj Cj^'if in (4) 
represents the generalized steering vector (spatial signa- 
ture) associated to the jammer and all of its multipart». 

C.   Comments 
In the case of a noise free channel, equations (11) and 

(25) become, 

(l-l)2 

.    7o 
SNRo (26) 

SNR'"    =     (1+co.WK (27> 

According to (26), SNRon is independent of 

• the array geometry. 

• the jammer power. 

• the number of correlation matrices used in the SOBI 
algorithm. 

This invariance property is not satisfied when the pre- 
processor is disabled, as shown by relation (27). 

Note from (25) that for small jammer power, the de- 
tection becomes sensitive to noise through 71, 72 and 73. 
However, as the jammer power oj increases, the SNRon 

increases, leading to conclude that the higher the jammer 
power the better the detection. 

For L » 1 and high SNR, the receiver SNR im- 
provement factor using a two-sensor array and the SOBI 
algorithm over one-array element is 

"2 
SNR, 

SNR„ 
L(JSR) (28) 

whereas 
the receiver SNR improvement factor with/without the 
SOBI algorithm in a two-element array is 

"3 = 
i^R^Äiii±E2igil2(75ß)       (29) 
SNRoj/        (1.+ cos (6,)) 

It is clear that i/2 = "a for 0, = 0,-, as expected. 
In figures 2 and 3, we plot expressions (25) and1(11) 

versus the JSR and the number of chips/bit, respectively, 
for 9, = 0". 9) = 9" and K=4. These figures show the 
benefit of using the interference separation in the case of 
high jammer power. 

addition to the DS/SS signal, the array receives a jam- 
mer through three paths. The desired signal is a BPSK 
signal arriving at 90 = 0°. The jammer is composed or 
three fixed sinusoids whose frequencies are o>i = x/6, 
w, = jr/3 and u.-3 = w/2. The direct path of the jam- 
mer arrives at 0i = 2° whereas its multipart) arrive at 
02 = 10" and 03 = -10°. respectively. The noise used 
is zero-mean white complex Gaussian process. Four 
spatio-temporal correlation matrices at the first four lags 
T = 1,2,3,4 are considered in the SOBI algorithm. 

Figure 4 presents the Bit Error Rate (BER) in dB ver- 
sus JSR for 0 dB SNR and 8 chips/bit. 16 chips/bit, 32 
chips/bit and 64 chips/bit. Under 32 chips/bit and 64 
chips/bit, the proposed method offers no error over 10s 

runs for JSR up to 90 dB. Figures 5 displays the BER 
versus the number of chips/bit for 0 dB SNR for 60 dB 
JSR. It is evident that the probability of error is remark- 
ably reduced under the proposed method. 

VI.    Conclusions 

In this paper, we presented a new interference mitiga- 
tion scheme for spread spectrum communications. Blind 
source separation techniques arc applied to increase the 
rejection capability of the direct sequence SS communi- 
cations systems to narrowband interference. The main 
motivation behind the proposed approach is to further 
immune the DS/SS system against strong interference 
and its multipath. The later is most appropriately han- 
dled by blind source separation methods, which do not 
lead to reduced array aperture, as in the case of spa- 
tial averaging methods. With the inclusion or blind 
source separation methods, the overall DS/SS receiver 
consists or a signal separator, selector, despreader fol- 
lowed by a detector. Although directions-or-arrival esti- 
mation is not necessary for the proposed preprocessing 
interrerence rejection scheme, it may be used to iden- 
tify the spread spectrum signal, upon separation. The 
performance analysis of DS/SS receiver in conjunction 
with the proposed interference mitigation scheme has 
been presented. Closed form expressions or the receiver 
signal-to-noise ratios have been derived. We have con- 
sidered three improvement factors depicting the gain in 
performance with/without the spatial diversity and blind 
source separation. BER curves were provided for mul- 
tipath and coherent signal environment. These curves 
clearly show the significant reduction in bit error rales 
when employing blind source separations. 

V.   Numerical Results 

In this Section, we consider a uniform linear ar- 
ray of two sensors separated by half a wavelength. In 
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ABSTRACT 

This paper addresses the problem of the blind source sepa- 
ration which consists of recovering a set of signals of which 
only instantaneous linear mixtures are observed. A blind 
source separation approach exploiting the difference in the 
time-frequency (t-f) signatures of the sources is considered. 
The approach is based on the diagonalization of a combined 
set of 'spatial time-frequency distributions'. Asymptotic 
performance analysis of the proposed method is performed. 
Numerical simulations are provided to demonstrate the ef- 
fectiveness of our approach and to validate the theoretical 
expression of the asymptotic performance. 

1.    INTRODUCTION 

Blind source separation consists of recovering a set of signals 
of which only instantaneous linear mixtures are observed. 
The first solution to this problem was based on the cancel- 
lation of higher order moments assuming non-Gaussian and 
i.i.d. source signals [l]. Since then, other criteria based on 
minimizations of cost functions, such as the sum of square 
fourth order cumulants [2, 3], contrast functions [2] or like- 
lihood function [4], have been used by several researchers. 
In the case of non i.i.d. source signals and even Gaussian 
sources, solutions based on second order statistics are pos- 
sible [5, 6]. Matsuaka et al. have shown that the problem 
of the separation of nonstationary signals can be solved us- 
ing second order decorrelation only [7]. They implicitly use 
the nonstationarity of the signal via a neural net approach. 
Herein, we propose to take advantage explicitly of the non- 
stationarity property of the signals to be separated. This 
is done by resorting to the powerful tool of time frequency 
signal representations. 

In this paper, we develop an approach based on a joint 
- diagonalization of a combined set of spatial time-frequency 
distributions. This approach exploits the difference between 
the t-f signatures of the sources. In contrast to existing 
methods, the proposed approach allows the separation of 
Gaussian sources with identical spectra shape but with dif- 
ferent time-frequency localization properties. Moreover, the 
effects of spreading the noise power while localizing the 
source energy in the time-frequency domain amounts to in- 
crease the robustness of the proposed approach with respect 
to noise. 

2.    PROBLEM FORMULATION 

Consider m sensors receiving an instantaneous linear mix- 
ture of signals emitted from n sources. The m x 1 vector 
x(() denotes the output of the sensors at time instant ( 
which may'be corrupted by an additive noise n(t). Hence, 
the linear data model is given by: 

x(t) = As(t) + n(t), (1) 

This work is supported by Rome Lab, NY, contract # 
F30602-96-C-0077. 
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where the m x n matrix A is called the 'mixing matrix'. The 
n source signals are collected in a n x 1 vector denoted s(t) 
which is referred to as the source signal vector. The sources 
are assumed to have different structures and localization 
properties in the time frequency domain. The mixing ma- 
trix A is full column rank but is otherwise unknown. In 
contrast with traditional parametric methods, no specific 
structure of the mixture matrix is assumed. 

The problem of blind source separation has two inherent 
ambiguities. First, it is not possible to know the original 
labeling of the sources, hence any permutation of the esti- 
mated sources is also a satisfactory solution. The second 
ambiguity is that it is inherently impossible to uniquely 
identify the source signals. We take advantage of the sec- 
ond indeterminacy by treating the source signals as if they 
have unit power. This normalization still leaves undeter- 
mined the ordering and the phases of the columns of A. 
Hence, the blind source separation is a technique for the 
identification of the mixing matrix and/or the recovering 
of the source signals up to a fixed permutation and some 
complex factors. 

3.    SPATIAL TIME-FREQUENCY 
DISTRIBUTIONS 

The discrete-time form of the Cohen's class of time- 
frequency distributions (TFD), for signal x(t), is given by 
[8] 

Dss(t,J)=    £   ^(m.O^t + m-rO^ + m-Oe"**7' 
frm»-~oo 

(2) 
where t and / represent the time index and the frequency 
index, respectively. The kernel <f>(m,l) characterizes the 
distribution and is a function of both the time and lag vari- - 
ables. The cross-TFD of two signals ij (t) and xa(f) is de- 



fined by 

oo 

(3) 
Expressions (2) and (3) are now used to define the follow- 

ing data spatial time-frequency distribution (STFD) matrix, 

oo 

D«(t,/)=    £   *Kl)*(t+m+J)x,(t + !ii-Oe-*,,/l 

I,mr-oo 

(4) 
where [Dx]((t,/)],, = 0,^.(4,/),   for i,> = l.-.n. 

Under the linear data model of equation (1) and assuming 
noise-free environment, the STFD matrix takes the follow- 
ing simple structure: 

D„(t,f) = AD„(t,f)Al 
(5) 

where D„(t, /) is the signal TFD matrix whose entries are 
the auto- and cross-TFDs of the sources. We note that 
Dxx(t,/) is of dimension m x ro, whereas DM(t,/) is of 
n x n dimension. For narrowband array signal processing 
applications, matrix A holds the spatial information and 
maps the auto- and cross-TFDs of the sources into auto- 
and cross-TFDs of the data. 

Since the off-diagonal elements of D„(t,/) are cross- 
terms, then this matrix is diagonal for each time-frequency 
(t-f) point which corresponds to a true power concentra- 
tion, i.e. signal auto-term. In the sequel, we consider the t-f 
points which satisfy this property. In practice, to simplify 
the selection of auto-terms, we apply a smoothing kernel 
4>(rn,l) that significantly decreases the contribution of the 
cross-terms in the t-f plane. This kernel can be a member 
of the reduced interference distribution (RID) introduced in 
[9] or signal-dependent which matches the underlying signal 
characteristics [10]. 

4.    PROPOSED ALGORITHM 

Let W denotes a m x n matrix, such that (WA)(WA)* = 
UU = I, i.e. WA isamxm unitary matrix (this matrix is 
referred to as a whitening matrix, since it whitens the signal 
part of the observations). Pre- and post-multiplying the 
TFD-matrices Dxx(t,/) by W, we then define the whitened 
TFD-matrices as: 

a,x(*./)=wD„(t,/)w* (6) 

From the definition of W and Eq.(5), we may expressed 
E„('./)as 

D„('./) = UDM(t,/)U* (7) 

Since the matrix U is unitary and D„(t,/) is diagonal, 
expression (7) shows that any whitened data STFD-matrix 
is diagonal in the basis of the columns of the matrix U 
(the eigenvalues of D„(t,/) being the diagonal entries of 
D„(t,/)). 

If, for the (t0, /«) point, the diagonal elements of 
DM(ta,/a) are all distinct, the missing unitary matrix U 
may be 'uniquely' (i.e.    up to permutation and phase 

shifts) retrieved by computing the eigendecomposition of 
Dxi(*o, fa)- However, when the t-f signatures of the differ- 
ent signals are not highly overlapping or frequently inter- 
secting, which is likely to be the case, the selected (*«,/„) 
point often corresponds to a single signal auto-term, render- 
ing matrix D,„(t0, /„) defficient. That is, only one diagonal 
element of D„(t0, /«) is different from zero. It follows that 
the determination of the matrix U from the eigendecompo- 
sition of a single whitened data STFD-matrix is no longer 
'unique' in the sense defined above. The situation is more 
favorable when considering simultaneous diagonalization of 
a combined set {D„(t,,/,)|t' = l, — ,p) of p STFD matri- 
ces. This amounts to incorporating several time-frequency 
points in the source separation problem. It is noteworthy 
that two source signals with identical t-f signatures can not 
be separated even with the inclusion of all information in 
the t-f plane. 

Joint diagonalization: The joint diagonalization [6] can 
be explained by first noting that the problem of the diago- 
nalization of a single n x n normal matrix M is equivalent 
to the minimization of the criterion [11] 

C(M,V)l£,-]£|YfMv1f (8) 

over the set of unitary matrices V = [vi,---,v„]. Hence, 
the joint diagonalization of a set {Mjtfjt = 1..K} of K ar- 
bitrary n x n matrices is defined as the minimization of the 
following JD criterion: 

C(V) 1* - ]TC(M», V) = -J2 KM*v,f      (9) 
* ki 

tinder the same unitary constraint. An efficient joint ap- 
proximate diagonalization algorithm exists in [6] and it is 
a generalization of the Jacobi technique [11] for the exact 
diagonalization of a single normal matrix. 

Identification Procedure: Equations (5-9) constitute 
the blind source separation approach based on TFD which 
is summarized by the following steps 

• Determine the whitening matrix W from the eigende- 
composition of an estimate of the covariance matrix of 
the data (see [6] for more details). 

• Determine the unitary matrix U by minimizing the 
joint approximate diagonalization criterion for a spe- 
cific set of whitened TFD matrices {D„(i.-,/i)|«. = 
1. ■■,P}, 

• Obtain an estimate of the mixture matrix A as Ä = 
W*U, where the superscript # denotes the pseudo- 
inverse, and an estimate of the source signals s(() as 
s(t) = VHWx(t). 

5.   ASYMPTOTIC PERFORMANCE 

The performance is characterized in terms of signal re- 
jection.    After identification of the matrix A, the esti- 
mated source signals may be obtained as s(t) = A*x(t) = 
Ä*As(t) + Ä*n(t). 
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The matrix P defined by P = A* A should be close to 
some matrix P with only one aero phase term in each row 
and each column (phase and permutation indeterminacies). 
For convenience, we assume that P is close to a diagonal 
rather than to some other permutation matrix. The p-th 
estimated source signal is 

n 

The power of the 9-th source signal residual (interference) 

in the p-th estimated source signal is: Ip, = E|PM|2 (since 
the sources have unit power, this quantity is nothing but the 
interference to signal ratio (ISR) for the g and p-th source). 
As a global measure of performance, we use the overall re- 
jection level denned as the sum of all the interferences 

i^'X^I^E2™ (11) 
rtp «/p 

In the case of Gaussian noise and deterministic source sig- 
nals, we have derived closed form expressions of the rejec- 
tion index at the limit of large snapshots. Details of the 
calculation are presented in [12]. 

Ipq=7c„+e2ITV + <r*iP\ 

where the coefficients of the expansion are 

K 
1 

(12) 

Z°     =    - 
*=' 

K 

±L   =   4 -^(Tpp-J« + TM>W - 2J °MQP«* [rTpqJ1f 

K 

+rT„JPql{D.p.,(tt,fk)Jq, + D.,.t(tk,h)Jpr)} + Y^ W 
*^=i 

o„i{D,r.,{tk, h)J„ + D.,.,(t,J,)J„ + ft;'., Jn + Fi^Jpp)] 

i2   =  - oliv«'™+Jk£) - *Y,a"a"kJ,"'Jpp 

k»l 

+ 22 °>,*<»Ml(lJp«r1 + tklJppJw) 

with 

<x„    =    1 + MPP-KM* 
|dp-d,P 

dr   =   [r>.r.r(«i,/i) D,r,r{tK,Mf 

|dp-d,P 
T 

Op,k     = 

Jyq — (A       A)M 

+00 

I**,r     = V      *(m,v)*{m-v-v' + tk-tt,v') 

»'»,m= — 00 

>p{tk + m + v)»;(<* + m - « - 2v')e-'"" V ,M--y<«/*»,-><»/i»' 
3p\>Jt T "• T- «/»p 

+ M 

4„    =        53    *(m,v)#*(m + (t*-i|),t»)e -><*(/*-/<)' 

w,fn=—00 

For high signal to noise ratio, the expansion (12) is domi- 
nated by the first term Zj),. Below, some comments on this 
term are given: 

• If the sources p and g have identical t-f signatures over 
the chosen t-f points (i.e. dp = d, ), the corresponding 

ISR Zp, -» 00. 

• As the correlation function rrM of the sources p and 
g and the cross-terms I»,,.,(t*,/*) vanish, the corre- 
sponding ISR given by Zp, also vanishes, yielding a 
perfect separation. 

• Zj, is independent of the mixing matrix. In the array 
processing context, it means that performance in terms 
of interference rejection are unaffected by the array ge- 
ometry. The performance depends only on the sample 
size and the t-f signatures of the sources. 

6. PERFORMANCE EVALUATION 

Numerical experiments: we consider a uniform linear 
array of three sensors having half wavelength spacing and 
receiving signals from two sources in the presence of white 
Gaussian noise. The sources arrive from different direc- 
tions ^1 = 0 and <h = 20 degrees. The source signals 
are generated by filtering a complex circular white Gaus- 
sian processes by an AR model of order one with coefficient 
a, = 0.85 exp(j27r/,(0) and a* = 0.85exp(i2*/j(t)), where 
we have: 

AW 
■( 

0.0625    for t = 1 : 400 
0.1250    for I = 401 :450 
0.3750    for t = 451 :850 

0.3750 for t = 1: 400 
0.1250 + */   for t = 401: 450 

0.0625        for t = 451: 850 

The signal to noise ratio (SNR) fa set at 5 dB. The kernel 
used for the computation of the TFDs is the Choi-Williams 
kernel (8] , which provides a good reduction of the cross- 
terms. Eight TFD matrices are considered. The corre- 
sponding t-f poults are those of the highest power in the 
t-f domain. The mean rejection level fa evaluated over 500 
Monte-Carlo runs. 

Table 1 shows the mean rejection level in dB versus the 
'spectral shift' if both for SOBI algorithm [6] and the new 
algorithm. Note that for Sf = 0, the two Gaussian source 
signals have identical spectra shape. In this case, while SOBI 
fails1 in separating the two sources, the proposed algorithm 
succeed. 

'We admit that a source separation algorithm fail» when the 
mean rejection level is greater than —10 dB. 
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Spectra/ shift (Sf) Mean Rejection level in dB 
SOB1 TFS 

0.000 -8.86 -12.22 
0.002 -10.01 -12.21 
0.010 -10.18 -12.34 
0.050 -11.09 -12.53 
0.200 -12.92 -12.54 

Table 1. Performance of SOBI and TFS algorithms vs Sf 
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Figure 1. Performance validation vs e7. 

Validation of the asymptotic performance: Herein, 
the evaluation of the domain of validity of the first-order 
performance approximation (12) is considered. The previ- 
ous settings are used with the exception of the source signals 
which are deterministic sinusoids at frequencies f\ = 0.4375 
and f2 = 0.0625. The TFDs are computed using win- 
dowed Wigner distribution. The chosen window width is 
M' = 2L+ 1, with L = 32. The identification is performed 
usin6 x? STFD matrices spaced in time by M samples (T 
being the sample size). The overall rejection level is evalu- 
ated over 500 independent runs. 

In Fig.l, the rejection level Xpert >* plotted in dB as a 
function of the noise power a2 (also expressed in dB). In 
Pig.2, the rejection level Iperf is plotted in dB as against 
sample size. Both figures 1 and 2 show that the approxima- 
tion is better'at high SNR and for large sample size. This 
means that the asymptotic conditions are reached faster in 
this range of parameters. 

7.   CONCLUSION 

In this paper, the problem of blind separation of linear spa- 
tial mixture of non-stationary source signal based on time 
frequency distributions has been investigated. A solution 
based on the diagonalization of a combined set of spatial 
time frequency distribution matrices has been proposed. A 
closed form expression for the performance criterion of the 
method has been developed. Numerical simulations have 
been provided to support the theoretical claims. 

-w  -, 1 , , r— ,  

-12 1                    - -'. EipcÄMntal periwmanct 

x                   »iTbconicpcrfofnanM 

-H \\ 
\ * 

•o \ \ 
c \ i 

;-K 
\ i 

s 
8 

u \ 
\ \> 
•z ^^v 

-» x> \\ >> 

-22 ^"^C^-* 

-24  1 1 1 1 1 t            1 

m»      «on 
Snfia 

Figure 2. Performance validation vs samples size (T). 

REFERENCES 

[1] C. Jutten and J. Herault, "Detection de grandeurs prim- 
itives dans un message composite par une architecture de 
calcul neuromimetrique en apprentissage non supervise," in 
Proc. GrtUi, (Nice), 1985. 

[2] P. Comon, "Independent component analysis, a new con- 
. cept?," Signal Processing, vol. 36, pp. 287-314, 1994. 

[3] J.-F. Cardoso and A. Souloumiac, "An efficient technique 
for blind separation of complex sources," in Proc. IEEE SP 
Workshop on Higher-Order Stat., Lake Tahoe, USA, 1993. 

[4] A. Belouchrani and J.-F. Cardoso, "Maximum likelihood 
source separation for discrete sources," in Proc. EVSIPCO, 
pp. 768-771,1994. 

[5] L. Tong and R. Liu, "Blind estimation of correlated source 
signals," in Proc. Asilomar conference, Nov. 1990. 

[6] A. Belouchrani and K. Abed Meraim and J.-F Cardoso and 
E. Moulines, "A blind source separation technique using sec- 
ond order statistics," IEEE Trans, on SP, 1996. To appear. 

[7] K. Matsuoka, M. Ohya and M. Kawamoto, "A neural net for 
blind separation of nonstationary signals," Neural Networks, 
vol. 8, pp. 411-419,1995. 

[8] L. Cohen, Time-frequency analysis. Prentice Hall, 1995. 

[9] J. Jeong and W. Williams, "Kernel design for reduced inter- 
ference distributions," IEEE Trans, on SP, vol. 40, pp. 402- 
412, Feb. 1992. 

[10] R. Baraniuk and D. Jones, "A signal dependent time- 
frequency representation: Optimum kernel design," IEEE 
Trans, on SP, vol. 41, pp. 1589-1603, Apr. 1993. 

[11] G.H. Golub and C.F. Van Loan, Matrix computations. The 
Johns Hopkins University Press, 1989. 

[12] A. Belouchrani and M. G. Amin, " Blind Source Separation 
Based on Time-Frequency Signal Representation.,* IEEE 
Trans, on SP, 1996. Submitted. 

142 



Asilomar Conference Signals, Systems, and Computers, Pacific Grove, CA. November 1996. 

Interference mitigation in spread spectrum communications using blind source 
separation 

Adel Belouchrani, Moeness G. Amin, and Chenshu Wang 
Department of Electrical and Computer Engineering, 

Villanova University, Villanova, PA 19085 
adel,moeness@ece.viII.edu 

Abstract 

In this paper, we propose to apply blind source separa- 
tion techniques for jammer mitigation in spread spectrum 
(SS) communication systems. These techniques strive to 
separate the jammer fmm the signal and as such produce 
a signal with reduced jammer contamination. With the jam- 
mer mostly mitigated through the separation process, the 
SS system requires smaller spreading gain and transmission 
bandwidth than the case if no separation is performed. The 
proposed spread spectrum receiver based on source separa- 
tion improves the SNR at the correlator output and its per- 
formance is robust to mullipath and coherent jamming en- 
vironment. Simulation results including the bit error rates 
are provided to illustrate the effectiveness of the proposed 
appmach. 

1    Introduction 

Code division multiple-access (CDMA) using direct- 
sequence spread spectrum (DS/SS) signaling is among 
the most promising multiplexing technologies for cellular 
telecommunications services, such as personal communi- 
cations, mobile telephony, and indoor wireless networks. 
The advantages of DS/SS for the aforementioned services 
include superior operation in mullipath environments, in- 
creased capacity in bursty or fading channels, flexibility in 
«he allocation of channels, the possibility to operate asyn- 
chronously, and the ability to share bandwidth with narrow- 
band communication systems without affecting the perfor- 
mance of either systems. An DS/SS system can be defined 
simply as one in which the transmitted signal is spreaded 
over a bandwidth much wider than the minimum bandwidth 
necessary to transmit the information |IJ. by means of a 
code independent of the data. The availability of this code at 

0077 
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the receiver enables despreading and recovery of data, while 
spreading and suppression of interference. The processing 
gain of an DS/SS system, generally defined as the ratio be- 
tween the transmission and data bandwidths, is a measure 
of its interference rejection capability [IJ.  This inherent 
ability of DS/SS systems to suppress interference is signifi- 
cantly enhanced when a complementary interference rejec- 
tion technique [2] is incorporated. These techniques have 
been first developed for military applications as a means 
to combat hostile narrowband jamming of the DS/SS sig- 
nal, but they can also be used to mitigate the effects of un- 
intentional narrowband interference caused by co-existence 
with conventional communications as well. The use of these 
techniques allows the CDMA users to communicate reliably 
with much less power than would otherwise be required 
in the presence of the narrowband users, and therefore in- 
creases the value for the maximum number of CDMA users 
that can be tolerated, with an acceptable level of degrada- 
tion for the narrowband users. 

So far, all the proposed interference rejection techniques 
{2J for spread spectrum communications are interference 
excision techniques, which relics on applying an excision 
filter prior to the despreading. Excision filters act on sup- 
pressing the interference and thus increase the signal-to- 
noise ratio at the correlator output of the receiver. These 
filters can be block or adaptive and may be realized in time 
J3J. frequency {4J. or lime frequency domain. The later 
includes the wavelet |5J and Gabor transforms J6J as well 
as bilinear time frequency distributions [7, 8,9]. But pre- 
processing using excision filters may eliminate a significant 
pan of the desired signal, prove impractical and difficult t« 
implement for on line high data rate communications, and 
yield poor performance in rapidly changing jamming envi- 
ronment. Instead of excising the interference, we propose in 
this paper to separate the interference from the signal prior 
to the despreading, by taking advantage of the spatial diver- 
sity provided by a multisensor array. This can be accom: 

pushed by a blind source separation technique already con- 
sidered in (10). It is shown that this technique substantiell;. 
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vwuoes the probability or error at the receiver and requires 
«roller spreading gain and transmission bandwidth than the 

..*-..• if no separation is performed. An important feature 
- UK- context of narrowband signals is that the separation 
.-. r-.mque is robust under muhipath and coherent jamming 
.:-.\;ronmenl. 

2   System Model 

An SS communication system which employs binar)' 
phase-shift-keying (BPSK) for both chip and data modu- 
lation "is considered. We consider also an array of n sensors 
receiving signals from two sources (a desired signal and a 
h:uTOwband jammer). The array output denoted by x(t) is 
a ri x 1 random vector. In the presence of spatially inde- 
pendent additive noise n[l), the narrowband data model is 
given by: 

x(0 = Ay(r) + n(*), y(0 = [*(0 j[t))T       (I) 

where *(/) is the desired signal and j(l) is the jammer. The 
two waveforms s(t) and j(i) are assumed to be statistically 
independent. The baseband SS signal s{t) has the following 
form 

5(0=   £ bkmk(l-kT), 

where 

*=-•» 

Jtf-i 
mk{t)= Y,c?p(t-lTe) 

(2) 

(3) 
(=0 

lii(2H3).T"1 is the data (bit) rate, and T'1 is the chip rate. 
The integer M = T/Tc is the number of chips per bit (SS 
processing gain). {6*} and {cf }/=o, -,Af-i represent the k- 
th bit data sequence and the corresponding chip sequence, 
/»(r) is the chip pulse. 

The matrix A, which in general corresponds to the steer- 
ing matrix, is assumed to be full column rank. However no 
particular structure of this matrix is enforced in the sequel. 
This relaxation is important to handle interference multi- 
path. In this case, the column vector of A associated with 
the jammer becomes the sum of the direct-path and mul- 
tipath steering vectors multiplied by an exponential phase 
delay introduced by each path. The resulting vector does 
not have the phase progression property of a steering vec- 
tor. Because of the fact that we do not assume any structure 
of the matrix A, the performance of the proposed receiver 
should be unaffected under muhipath and coherent environ- 
ment. It is noteworthy that by considering the direction of 
arrival of the desired signal equal to $ = 0*. model (1) still 
holds when s{t) is wideband, since each sensor receives the 
same signal with no delay or phase change. 
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Figure 1. Spread spectrum system using 
blind source separation. 

3   A New Interference Mitigation Design 

The block diagram shown in Fig.l illustrates the pro- 
posed interference mitigation spread spectrum communica- 
tion system. The standard spread spectrum demodulation is 
preceeded by a preprocessor, which consists of a separator 
followed by a selector. The separator acts on separating the 
interference from the signal by utilizing the spatial diversity 
provided by the multi-sensor array. This separation can be 
performed only up to a permutation (see below). Hence, a 
selection device is needed to label the separated waveforms 
as signal and jammer. The demodulation process recovers 
the original data by despreading the selected (desired) sig- 
nal, while spreading the background noise and any interfer- 
ence component which might have not been separated from 
the signal. In the following, we describe each processing 

• step in more details. 

3.1    Separation 

The separation of the signal from the interference is 
achieved by using blind source separation techniques. 
These techniques strive to recover the source vector y(<) 
from the array output x(f) without knowledge of the matrix 
A. The benefit of such a 'blind' processing is that the sepa- 
ration is essentially unaffected by errors in the propagation 
model or in array calibration. Source separation techniques 
are based on the assumption of statistical independence of 

- the source signals. 
Various algorithms have been proposed for the blind 

source separation [11, 12, 13, 10]. In this paper, we only 
focus on the so called SOBI (Second Order Blind Identifica- 
tion) algorithm 110]. This algorithm is based on the simulta- 
neous diagonalization of a combined set of spatio-temporal 
correlation matrices of the received signals (for more details 

^SM reference [10]). 



]| is well established lhai there is two inherent ambigui- 
•ii> in the blind source separation problem. First, there is no 
s.,v of knowing the original labeling of the sources, hence 

JA" permutation of the estimated sources is also a satisfac- 
:,.ry solution. The second ambiguity is that it is impossible 
-.. uniquely identify the source signals. This is because the 
vM-kmee of a fixed scalar factor between a source signal 
.,iul iherorcesponding column ohne mixture matrix A docs 
m.i affect the observations, as shown by the relation. 

x(!)«Ay(l) + i.lO«i;S|W(fl + »W.    (4) 

where o,- is an arbitrary complex factor arid a, denotes the 
J-th column of A. Hence, the blind source separation must 
be understood as the recovering of the source signals up to 
a lixed permutation and son« complex factors. 

3.2 Selection 

Because of the inherent ambiguity stated above, a selec- 
ts at the output of ihc separator is necessary to identify 
the desired signal Tor postprocessing . For this purpose, 
several strategics can be considered, the selection can be 
Mscd on the signaiurc c>r the desired signal which may be 
known by the receiver. As such, the problem of the selection 
hecomes a pure problem of signal classilicaiion |14. 15J. 
Oilier strategics can be based on some a priori knowledge 
,.r the desired signal; for example its direction of arrival 
(DOA) The component whose steering vector in .-1 matches 
ihc signal DOA is taken as the SS signal. The selection can 
aNo be based on the relative power of the separated signals, 
which makes use »>r the fact that the jammer has often a 
higher power than the spread spectrum signal. In section 4. 
the selection is based on the a priori knowledge of the di- 
rection of arrival of the desired signal. 

3.3 Spread Spectrum Demodulation 

This last step consists of desprcading the selected sig- 
nal for recoverinc the original data bit sequence {bk}. 
This is accomplished by the correlation of the received 
signal with a synchronized replica of the spreading sig- 

nal {cf }r-o~.«-i uscd ,0 sPread ,hc ,ransmiU!d $ipT 
While the correlator despreads the desired signal, it spreads 
any interference components which might have escaped to 
the desired signal in the separation process. 

The demodulation process improves the signal-to- 
interference and noise ratio at the receiver by an amount 
defined as the processing gain (PC). The later is the ratio of 
the spreading bandwidth and the desired signal information 

bandwidth (baseband). 
Spreading Bandwidth       _ T_ 

K = Information Signal Bandwidth      Te 

4   Simulation 

xlin 

x2u) 

Array of sensors 

Figure 2. Scenario of the simulation. 

Consider a uniform linear array of two sensors separated 
by half a wavclcncth and receiving signals from one de- 
sired source and one direct-path along two mult.path of the 
same jammer (sec Fig.2). The desired signal is a BPSK!sig- 
nal arriving at 00 = 0°. The jammer is composed ofjhrcc 
fixed sinusoids whose frequencies are w, = JT/6.^2 _ «/3 
and u3 = s/2. The direct path of the jammer arrives at 
0, = 2" and the two multipath of jammer arrive at 0-, - 10' 
and 03 = -10°. respectively. The noise used is zero-mean 
white Gaussian distributed process. Four spatio-temporal 
correlation matrices at the first four lags r = 1,2,3.4 are 
considered in SOBI algorithm. Figure 3 presents the Bit 
Error Rate (BER) in dB versus the Jammer to Signal Ra- 
tion (JSR) for 0 dB SNR both for 8 chips/bit. 16 ch.ps/bit 
12 chips/bit and 64 chips/bit. Under 32 chips/bit and 64 
chips/bit. the proposed method offers no error over 10 runs 
for Jammer toSignal Ratio of 90 dB. Figures 4 and 5 display 
the BER in dB versus respectively the number of chipset 
for 0 dB SNR and the SNR for 60 dB JSR. It is evident that 
the probability or error is remarkably reduced under the pro- 

posed method. 

5   Conclusion 

In this paper, mitigation of narrowband interference in 
spread spectrum communication systems is achieved based 
on a blind source separation technique. Interference exci- 
sion techniques for spread spectrum communications aim 
to increase the sienal-lo-noise ratio at the receiver output by 
suppressing the interference. But. at meantime, they elim- 
inate a significant part of the desired signal. Instead of ex- 
cising the interference, the proposed approach separates the 
interference from the signal prior to the despread.ng using 
the spatial diversity provided by the multisensor array. This 
is accomplished by the blind source separation technique 
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of [lOJ. The later refereed to as SOBI for second order 
blind source separation is based on the simultaneous diago- 
nalization of a combined set of spatio-temporal correlation 
matrices of the received signals. Because of the inherent 
indeterminacies of the blind source separation problem, a 
selector at the separator output is needed to label the sepa- 
rated waveforms as signal and jammer. Hence, some strate- 
gies of selection are presented in the paper. An important 
feature of using the blind source separation is that the pro- 
posed interference mitigation scheme is robust under multi- 
path and coherent jamming environment. Some simulation 
results were presented to illustrate the effectiveness of the 

proposed approach. 
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Figure 3. BER in (dB) vs JSR 
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ABSTRACT 

This paper deals with the problem of blind source separation which consists of recovering a set of signals from 
instantaneous linear mixtures of them. So far, this problem has been solved using statistical information available 
on the source signals. Here, we propose an approach for blind source separation based on time-frequency (t-f) 
signal representations. This approach is based on a 'joint diagonalization' of a combined set of time frequency 
distribution matrices which correspond to different t-f points. It relies on the difference in the t-f signatures of 
the sources to be separated. In contrast to existing techniques, the proposed approach allows the separation 
of Gaussian sources with identical spectra shape. Because of changes incurred in the t-f signal structures due 
to time-delay, the new approach can be employed to separate multipath signals received by multi-sensor array. 
Moreover, the effects of spreading the noise power while localizing the source energy in the time frequency domain 
amounts to increasing the signal to noise ratio (SNR) and hence improved performance. Numerical examples are 
provided to illustrate the effectiveness of our method. 

Keywords:  Blind source separation, Spatial diversity, Time frequency distributions, Joint diagonalization. 
Time frequency signatures. 

1    Introduction 

Blind source separation is an emerging field of fundamental research with a broad range of applications. It 
is motivated by practical problems that involve several source signals and several sensors. Each sensor receives 
a linear mixture of the source signals. The problem of the blind source separation consists then of recovering 
the original waveforms of the sources without any knowledge of the mixture structure. This mixture is often a 
convolutive mixture. However, in this paper our main concern is the blind identification of an instantaneous linear 
mixture, which corresponds to a linear memoryless channel. This choice is motivated not only by the fact that 
such model is mathematically tractable, but also by the applicability to various areas, including semiconductor 
manufacturing process1 , factor analysis2 , narrow-band signal processing3 , and image reconstruction4 . 

So far, the problem of the blind source separation has been solved using statistical information available on 
the source signals. The first solution to the source separation problem was proposed almost a decade ago5 and 
was based on the cancellation of higher order moments assuming non-Gaussian and i.i.d source signals. Other 
criteria based on minimizations of cost functions, such as the sum of square fourth order cumulants*-8 , contrast 
functions7,9 or likelihood function10 , have been used by several researchers. Note that in the case of non i.i.d 

This work is supported by the Rome Lab., contract # F3O602-96-C-O0T7 
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source signals and even Gaussian sources, solutions based on second order statistics are possible"-" . 

When the frequency content of the source signals is time-varying, one can take advantage of the powerful tool 
of time frequency signal representations to separate and recover the incoming signals. The underlying P»Wemcan 
be posed as a signal svnthesis13 from the t-f plane with the incorporation of the spatial d.vers.ty prodded by the 
multfsensor. With the" proposed approach, no masking is required and cross-terms no longer ^-J^g^ 
in the synthesis of individual components. In this paper, we introduce a new blind identificat.on ^Jue *£~ 
1 jo5 equalization of a combined set of time-frequency distribution matrices. The new appro*.exploits 
the Terence between the t-f signatures of the sources. It has been established in he 1. erature of the bbnd 
source separation that the problem of the separation of Gaussian sources with idenUcal spectra^**£££ 
This may be only true for stationary process. But for sources with different structures and energy locafat'ons 

^he tle^equency domain, this Umitation can be easily overcome. Further, due to the_ difference of the t-f 
signatures of the time-delayed signals, the proposed approach can also separate multipath signals. 

The paper is organized as follows. In section 2, the problem of blind source separation is ^^tS^* 
the relevant hypothesis Section 3 introduces the definition of time frequency distribution matnces. Sect.on 4 
Present tie fre^ncv separation technique based on joint diagonalization of a combined set of tune frequency 
Sution matrkes. Numerical examples illustrating the effectiveness of this method are presented in section o. 

2    Statement of the problem 

2.1     Data Model and assumptions 

Consider m sensors receiving an instantaneous linear mixture of signals emitted from n^souxc ~ ^» * » 
vector x(f) denotes the output of the sensors at time instant t which may be corrupted by an additive no.se n(t). 

Hence, the linear data model is given by: -.. 
x(i) = As(r) + n(i), [) 

where the m x n matrix A is called the «mixing matrix'. The „ source signals are -Uectedm a.n x 1 vector 
denoted s(<) which is referred to as the source signal vector. The sources are assumed to have cufferen ^ructures 
and localization properties in the time frequency domain. The mixrng matnx A is full «£««!»£*£ 
otherwise unknown. In contrast with traditional parametric methods, no specific structure of the mixture matrix 

is assumed. 

2.2    Indeterminacies 

Let us point out that this problem of blind source separation has several inherent ambiguities. First o( all. 
there is no way of knowing the original labeling of the sources, hence any permutation or the estimated source, 

is also a satisfactory solution. 

The second ambiguitv is that it is inherently impossible to uniquely identify the source signals. This h; because 
the exchange of a fixed scalar factor between a source signal and the corresponding column of the mixture matrix 
A does not affect the observations as is shown by the following relation, 

x[t) = As(J) + n(<) = £ ^°'-5--(0 + "(')• ' -' 
i=l      ' 

where o, is an arbitrary complex factor and a, denotes the i-th column of A. Hence, the blind source separation 
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must be understood as the identification of the mixing matrix and/or the recovering of the source signals up to 
a axed permutation and some complex factors. 

3    Time Frequency Distribution Matrices 

The Cohen's class of time-frequency distributions (TFD)M of the signal x{t) is given by 

J     4>{t - ii, T)X{U + T/2)X'(U - T/2)e-j2''rdudr (3) 

where t and / represent the time index and the frequency index, respectively. The kernel Mt, r) is a function of 
the time and lag variables. The cross-TFD of two signals xi(r) and z2{t) is defined by 

*eo    ^oo 

0*i*»(*. /) = /     /     Mt - «, T)XI{U + T/2)X'2[U - T/2)e-j7*jTdudT 
J—oo J—oo W 

Expressions (3) and (4) are now used to define the following data time frequency distribution matrix, 
/OO       rOO 

/     <f>[t-u,r)x(u + r/2)x'(v-T/2)e-i2*'Tdudr (5) 
•oo J—oo 

*h™lD„(t,f))ij = DXi:i{t,f),   for i,i=l,...,n. 

A more general definition of the time frequency distribution matrix is given by, 
/OO       roo 

J     *(*-u,r)Ox(u + T/2)x*(«-r/2)e--'2''T
(furfr (6) 

where © designs the Hadamard product, and |«(j,r)]ö = 4{j{t,r) is the kernel associated with the pair of the 
sensor data z,(i) and ij(t). 

Under the assumption of the linear data model of Eq.(l) and neglecting the noise, the TFD matrix takes the 
following simple structure: 

D=(J,/) = ADM(<,/)AJf (7) 

where the superscript B denotes the complex conjugate transpose of a matrix and D„(t, f) are the signal TFD 
matrices. We note that D„(t,/) is of dimension m x m, whereas DM(t,/) is of n x n dimension. If the kernel 
*[t, r) is chosen in such away that the cross-terms in the TFD vanish, the matrix D„(r,/) will be diagonal. In 
the sequel, we assume that such property of the kernel Mt, r) is verified. 

4    Time Frequency Separation Principle 

Let W denotes a m x n matrix, such that (WA)(WA)ff = UU* = I, i.e. WA is a m x m unitary matrix 
(this matrix is referred to as a whitening matrix, since it whitens the signal part of the observations). Pre- and 
post-multiplying the TFD-matrices D„(r,/) by W, we then define the whitened TFD.matrices as: 

Dxx(r,/) = WD„(t,/)WF (8) 

From the definition of W and Eq.(7), we may expressed D„(l,/) as 

&.(!./) = UD„(«,/)U* (9) 
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5    Experimental results 

Separation of identical spectra shape signals: In this example, we consider a uniform Iinear_array of three_ 
sensors separated by half a wavelength and receiving signals from two sources. The additive noise is a zero mean 
white Gaussian process. The emitted signals are two sinusoids at the same frequency which turn on and off during 
different periods. The signal to noise ratio (SNR) is set at 5 dB. The kerne] used for the computation of the TFDs 
is the Choi-Williams kernel14 , which provide a good cancellation of the cross-terms. For the TFS algorithm, 
four TFD matrices are considered. The corresponding t-f points are those of the highest power in the t-f domain. 
Figures 1 and 2 display the TFDs of the two emitted signals and the three mixed signals (corresponding to the 
outputs of the three array sensors), respectively. Figures 3 shows the TFDs of the two estimated signals separated 
by the proposed approach. Figures 4 shows the TFDs of the two estimated signals separated by the second order 
blind identification (SOBI) algorithm proposed in12 . According to these figures, the TFS algorithm has clearly 
succeeded to separate the two emitted signals, while SOBI algorithm fails in this case. 

Separation of speech signals: Here we present an illustration that involves real data signals. Two speech 
signals sampled at 8000 Hz are mixed by the following miring matrix, 

A = 

The plots of the two individual speech signals are shown in Fig.5 and their TFDs are displayed in Fig.6. Speech 
1 and 2 of a male speaker are the words "Cars" and "Cats", respectively. The observed speech signals at three 
sensors are shown in Fig.7, while their TFDs are shown in Fig.8. Figures 9 and 10 show the speech signals 
estimated by TFS and their TFDs, respectively. It is clear that TFS works well in this case. The purpose of this 
example is to test the algorithm when speech signals are used. 

6    Conclusion 

In this paper, a new blind source separation approach using time frequency distributions is presented. It is 
based on the joint diagonalization of a combined set of time frequency distribution matrices. The concept of 
time-frequency distribution matrix is introduced. This method shows a number of attractive features. In contrast 
to blind source separation approaches using second-order and/or high order statistics, the proposed approach 
allows the separation of Gaussian sources with identical spectra. Moreover, the effects of spreading the noise 
power while localizing of the source energy in the time frequency domain amounts to increasing the signal to 
noise ratio (SNR). Numerical examples prove that the proposed TFS algorithm is able to separate sources with 
identical spectra. TFS is also applied to a speech extraction problem and shown to have promising results. Since 
time-delayed signals present different t-f signatures, it is also possible to separate multipath signals, such feature 
was not considered in this paper. 
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Since the matrix U is unitary and D„(t,/) is diagonal, expression (9) shows that any whiten-d data TFD- 
matrix is diagonal in the basis of the columns of the matrix U (the eigenvalues of D^t,/) being the diagonal 
entries of D„(c,/)). 

If, for a point (*,/) of the time frequency domain, the diagonal elements of Da3(t,f) are all distinct, the 
missing unitary matrix U may be 'uniquely' (i.e. up to permutation and phase shifts) retrieved by computing 
the eigendecomposition of D^Jf,/). Indeterminacy occurs in the case of degenerate eigenvalues, i.e. when 
A.»,(*i/) = Dtj,j(t,f), i j£ j. It does not seem possible to o priori determine some value for the point (t,/) 
such that the diagonal entries of Dsa(f,/) are all distinct. Of course, if the source signals have different time 
frequency signatures, such degeneracy is unlikely to occui. It is expected however, that when some eigenvalues of 
QxxCi /) comes close to degeneracy, the robustness of determining U from eigendecomposition of a single whitened 
TFD matrix is seriously impaired. The situation is more favorable when considering joint diagonalization of a 
combined set {Dxx(t;,fi)\i= l,---,p} of p TFD matrices. This amounts to incorporating several (t-f) points in 
the source separation problem. It is noteworthy that two source signals with identical t-f signatures can not be 
separated even with the inclusion of all information in the t-f plane. 

4.1    The approximate joint diagonalization 

Exact joint diagonalization of arbitrary matrices is generally impossible. Here, we define approximate joint 
diagonalization of a combined set of arbitrary matrices. We start by noting that the diagonalization of a single 
n x n normal matrix15 M may be understood as minimizing under unitary transform the sum of the squared 
moduli of all the off-diagonal terms. This may be shown to be equivalent to minimizing the criterion 

C(M,V)1?-][>:Mv,|J (10) 

over the set of unitary matrices V = [vlt- --.v,,]. Hence, the joint approximate diagonalization of a combined set 
{M*|fc = l..p) of p arbitrary n x n matrices is defined as the minimisation of the criterion: 

C(V) %' -J2C(Mk,V) = _£|vrM*v,f (ID 

under the same unitary constraint. An efficient joint approximate diagonalization algorithm exists in12 and it is 
a generalization of the Jacobi technique16 for the exact diagonalization of a single normal matrix. 

4.2    A time frequency separation algorithm (TFS). 

Equations (7-11) constitute the blind source separation approach based on TFD which is summarized by the 
following steps 

• Determine the whitening matrix W from the eigendecomposition of an estimate of the covariance matrix 
of the data (see12 for more details). 

• Determine the unitary matrix U by minimizing the joint approximate diagonalization criterion for a specific 
set of whitened TFD matrices {Dxx(f,-,/;)|J= 1,- -.p}. 

• Obtain an estimate of the mixture matrix A as A = W'U. where the superscript # denotes the pseudo- 
inverse, and an estimate of the source signals s(i) as s(«) = üJWx(ij. 

152 



[3] R Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans, on AP, vol. 34, DO. 1, 
pp. 276-280,1986. 

[4] G. Demoment, "Image reconstruction and restoration: Overview of common estimation structures and prob- 
lems," IEEE Trans, on ASSP, vol. 37, pp. 2024-22036, Oct. 1989. 

[5] C. Jutten and J. Herault, "Defection de grandeurs primitives dans un message composite par une architecture 
de calcul neuromimetrique en apprentissage non supervise," in Proc. Cretsi, (Nice), 1985. 

[6] M. Gaeta and J.-L. Lacoume, "Source separation without a priori knowledge:  the maximum likelihood 
solution," in Proc. EUSIPCO, pp. 621-624,1990. 

(7) P. Comon, "Independent component analysis, a new concept?," Signal Processing, vol. 36, pp. 287-314,1994. 

[8] J.-F. Cardoso and A. Souloumiac, "An efficient technique for blind separation of complex sources," in Proc. 
IEEE SP Workshop on Higher-Order Stat, Lake Tohoe, USA, 1993. 

[9] E. Moreau and 0. Macchi, "New self-adaptive algorithms for source separation based on contrast functions,'' 
in Proc. IEEE SP Workshop on Higher-Order Stat., Lake Tahoe, USA, 1993. 

[10] A. Belouchrani and J.-F. Cardoso, "Maximum likelihood source separation for discrete sources," in Proc. 
EUSIPCO, pp. 768-771,1994. 

[11] L. Tong and R. Liu, "Blind estimation of correlated source signals," in Proc. Asilomar conference, Nov. 1990. 

[12] A. Belouchrani and K. Abed Meraim and J.-F Cardoso and E. Moulines, "A blind source separation technique 
using second order statistics," IEEE Trans, on SP, 1996. To appear. 

[13] F. Hlawatsch and W. Krattenthaler, "Blinear Signal Synthesis," IEEE Trans, on SP, vol. 40, pp. 352-363, 
Feb. 1992. 

[14] L. Cohen, Time-frequency analysis. PreDtice Hall, 1995. 

[15] R. Horn and C. Johnson, Matrix analysis. Cambridge University Press, 1985. 

[16] G.H. Golub and C.F. Van Loan, Matrix computations. The Johns Hopkins University Press, 1989. 

TFX> of ibc first »©< 

lOO ISO 20O 250 300 3SO 400 -»SO 500 

J ru of >Jbe second source »igxxml 

153 



TED of the first mixed signal 
T 

50      100      150      200      250 A  .300.   350      400      450      500 
TFD of the second mixed Signal 

50       100      150 
TFD of the tWd mixedsignal 

100      150      200 250 
Time 

Figure 2. TFDs of received signals. 
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Broadband Interference Excision for Software-Radio 
Spread-Spectrum Communications Using 
Time-Frequency Distribution Synthesis 

Stephen R. Lach, Moeness G. Amin, Senior Member, IEEE, and Alan R. Lindsey, Member, IEEE 

Abstract—A new method fa introduced for interference ex- 
cision in spread-spectrum communications that is conducive to 
software-radio applications. Spare processing capacity in the 
receiver permits the use of time-frequency techniques to syn- 
thesize a nonstationary interference from the time-frequency 
domain using least squares methods. The synthesized signal is 
then subtracted from the incoming data in the time domain, 
leading to jammer removal and increased signal-to-interference- 
and-noise ratio at the input of the correlator. The paper focuses 
on jammers with constant modulus that are uniquely described by 
their instantaneous frequency characteristics. With this a priori 
knowledge, the jammer signal amplitude is restored by projecting 
each sample or the synthesized signal to a circle representing its 
constant modulus. With the phase matching provided by the least 
squares synthesis method and amplitude matching underlying 
the projection operation, a significant improvement in receiver 
perrormance/bit-error rates is achieved over the case where no 
projection is performed. Software-radio aspects including com- 
putational complexity and processing modes are also discussed. 

Index Terms— Interference excision, software radio, spread 
spectrum, time frequency, Wigner distribution. 

I. INTRODUCTION 

ONE of the most important applications of direct-sequence 
(DS) spread-spectrum (SS) communications is that of 

interference mitigation. A DSSS system is defined as one in 
which the transmitted signal is spread over a bandwidth much 
wider than the minimum bandwidth necessary to transmit 
the information {1] by means of a code independent of the 
data. The availability of this code at the receiver enables 
the despreading and recovery of data, while spreading and 
suppressing the interference. The processing gain of a DSSS 
system, generally defined as the ratio between the transmission 
and the data bandwidths, provides the system with a high 
degree of interference suppression. In principle, any level 
of interference rejection may be achieved with sufficient 
processing gain. This, however, may entail increasing the 

Manuscript received September 25.1997; revised June 19. 1998. This work 
was supported by Rome Laboratory under Contract F30602-96-0077. 

S. R. Lach was with the Department of Electrical and Computer Engineer- 
ing, Villanova University, Villanova, PA 19085 USA. He is now with the Air 
Force Research Laboratory, Eglin AFB. FL 32542 USA. 

M. G. Amin is with the Department of Electrical and Computer Engineering. 
Villanova University. Villanova. PA 19085 USA. 

A. R. Lindsey is with the Rome Laboratory, RL/C3BB, Rome, NY 13441 
USA. 

Publisher Item Identifier S 0733-8716(99)02973-X. . 

bandwidth of the transmitted signal beyond the limits of the 
available frequency spectrum. Therefore, signal processing 
techniques have been used in conjunction with the DSSS 
receiver to augment the processing gain, permitting greater 
interference protection without an increase in bandwidth [2]. 

Several past contributions deal with the suppression of 
narrow-band interference [3], [4]. In time-varying environ- 
ments, adaptive filters are employed to track and remove the 
nonstationary interference l5]-f7]- Recently, two approaches 
for broadband interference excision in DSSS communica- 
tions based on time-frequency analysis have been considered 
[8J—[12]. One approach is linear and based on multiresolu- 
tion analysis, whereas the second approach requires bilinear 
transformation of the data. In linear transform interference ex- 
cisions, the data are processed using Fourier, Gabor, or wavelet 
transforms. Excision of the correlated signal components of 
the received data is then performed by clipping, or gating, the 
high coefficient values followed by inverse transformation to 
recover the desired signal. 

The recent development of bilinear (quadratic) 
time-frequency distributions (TFD's) for improved signal 
power localization in the lime-frequency plane has motivated 
several filtering approaches for nonstationary interference 
excision in spread-spectrum communications. The most 
common of these methods uses an open-loop adaptive filter. 
In this approach, the jammer instantaneous frequency (IF) is 
estimated, and the received data are then processed by a short- 
length time-varying finite impulse response (FIR) filter with a 
notch at the jammer IF. This effectively removes the jammer, 
and causes the filter output to be essentially interference free. 
This approach is most applicable to rapidly time-varying 
environments in which the IF estimate can be obtained via 
estimation methods such as zero-crossing techniques, the least 
mean-squares (LMS) algorithm, etc. [13]. An implementation 
of interference excision systems using TFD's to determine 
the jammer IF has been thoroughly discussed in [14]-[16]. 
However, these time-domain notch filtering techniques also 
create a significant amount of self-noise, which is an induced 
correlation across the PN sequence. This correlation forms 
an upper bound on the maximum attainable value of the 
correlator SNR, and in many cases, the use of these filters 
makes the performance worse than when the preprocessing 
is disabled. Also, these techniques become ineffective for 

0733-87I6/99JI0O0 © 1999 IEEE 

160 



LACH « «t: INTERFERENCE EXCISION FOR SPREAD-SPECTRUM COMMUNICATIONS 

the multicomponent interference case. When the jamming 
signal is composed of more than one term at any time instant, 
processing the received signal with a filter with multiple 
notches yields an intolerable degree of self-noise, especially 
when only a small number of filter coefficients is used. For the 
above two reasons, alternatives for nonstationary interference 
excision in spread-spectrum communications are sought 

This paper uses time-frequency (t-f) distributions as a 
powerful tool for depicting the jammer power over time 
and frequency. However, contrary to the open-loop adaptive 
interference excision method, the excision filter is applied 
in the time-frequency domain, rather than the time domain, 
to capture the interference signature. Since the interference 
is characterized by its instantaneous frequency, its signature 
in the time-frequency domain is distinct from those of both 
the noise and the spread-spectrum signal, whose spectra are 
flat, independent of time. Therefore, filtering is achieved by 
masking the t-f regions of high power concentration, followed 
by synthesis of the jamming signal. The synthesized jammer 
signal is then subtracted from the incoming data to remove the 
interference component in the time domain. 

Of particular interest in this paper are jammers with the 
constant modulus property. In this case, the jamming signal 
can be estimated more accurately through a two-stage process. 
First, an estimate of the jammer is generated by masking out 
the signal and noise components of the data in the t-f domain, 
and then performing a least squares synthesis procedure. The 
result of the first stage is improved by taking each sample of 
the synthesized signal and projecting it on a circle representing 
the constant modulus of the jammer. The improved estimate of 
the jammer is independent of the order of the phase-matching 
and constant modulus projection operations. Subtraction of 
this estimate from the received signal results in a drastic 
enhancement in system performance. 

Section II summarizes the main steps of the time-frequency 
synthesis technique introduced in [18]. Section III addresses 
the issue of phase matching in t-f synthesis applied to 
interference mitigation in spread-spectrum communications. If 
the DSSS signal must be recovered from the t-f domain, 
then phase restoration of the synthesized signal is essential 
for aligning the PN sequence of the input data with that of 
the receiver prior to correlation. On the other hand, if the 
jammer signal is synthesized, effective interference removal 
is achieved by subtracting a proper copy of the synthesized 
jammer from the input data. In this case, phase ambiguity 
remains undesirable since subtraction may lead lo doubling 
the jammer power instead of removing it. Amplitude matching 
of jammers that are of constant modulus constitutes the key 
contribution of this paper, and is described in Section IV. 

■ Section V addresses the application of this technique to the 
.multicomponent jammer case, where each term of the inter- 
ference is known to be of constant modulus. In Section VI, the 
computational requirements of the algorithm are derived and 
compared with the recently introduced TFD-based interfer- 
ence excision technique outlined in [12]. Section VII presents 
several computer simulations which show the effect of both 
projection and phase matching on bit error rate (BER) applied 
to linear FM signals. 

II. TIME-FREQUENCY SIGNAL SYNTHESIS TECHNIQUES 

The Wigner-Ville distribution (WVD) W,(n, u) of the 
discrete-time signal x(n) is defined as [17] 

Wx{n,u,) = 2   f)   x{n + k)x'(n-k)e-^.      0) 
k=-oo 

There are several desirable properties of the WVD [16], but 
for the purposes of signal synthesis, it is enough to note that 
the WVD is always real and periodic in w (with period ir). 
The synthesis problem is finding the sequence x(n) whose 
WVD is closest in some sense to a desired real time-frequency 
distribution Y{n, w) that may not represent a valid WVD. 

If Y(n, u>) = W,(n, w) is a valid WVD, a direct calculation 
of the corresponding time-domain sequence x(n) can be 
accomplished [17] according to 

*(«+'*)*>-*) = 7- f W,(n, »)<**» to.   (2) 
2* J_,r/2 

If, however, Y{n, w) is not a WVD, one must find a 
sequence x(n) whose WVD best approximates Y(n, w). This 
problem is formulated and solved in a least squares sense [18] 
by minimizing the error 

E,x) = yl  f'2 \Y(n, w) - Wx(n, u>)|2-      (3) 

Using Parseval's theorem, this error can be rewritten as 

E(x) = £ £ |»(n, m) - 2i(n + m)x> - m)|2     (4) 

where 

y(n,m)=-  f"     Y(n,u>W""du (5) 

By substituting m = 2r - n for even values of the integer 
(n + m) and m = 2r - n - 1 for odd values, (4) becomes 

E(x) = E E Mn' 2r - ") " M2r)x'{2n - 2r)|2 

n       r 

+EX|y(n'2r -n -2) - ^2T - v*' 
>(2n-2r-l)|2. (9 

E(x) now consists of two summations, the first of which 
depends solely on the even-indexed components of x(n), and 
the second of which depends on the odd-indexed components. 
Therefore, minimization of the error in (6) requires minimizing 
the first summation independently of the second, or equiva- 
lently, determining the even- and odd-indexed components of 

Finding the even-indexed samples of x(n) is therefore 
equivalent to minimizing 

Ec{xt) = E E Mn' 2r " n) - 2x«(rK(» " 01*   (7) 

where 

xt(n) = x(2n). (8) 
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By setting the partial derivatives of (7) with respect to xe(p) 
and *:(p) equal to zero, the following eigenvalue/eigenvector 
equation is produced: 

C£xe = 4l|i«||2xe (9) 

where 
Ce(v+l,m + l) = y{m + p,p-m) + y*{m + p,m-p) 

(10) 

and 

MI
2
=£I*(»)I

2 öD 

Similarly, finding the odd-indexed samples of x(n) is equiv- 
alent to minimizing 

EB(XC)=Y, E !»("•2r_ n -1}" ^ w*> -r+m8 
n
     r (12) 

where 
x0(n) = x0(2n + l). .(13) 

This is accomplished by setting the partial derivatives of (12) 
with respect to x0{p) and x» equal to zero, producing the 
equation 

CA = 4||x0||
2x0 (14) 

where 

CB{p, m) = y(m+p-l, p-m)+y*(m+p-l, m-p). (15) 

Ct and C0 are therefore Hermitian matrices of size Pe and 
F„, respectively: 

(16) Pc = floor[^] 
and 

P0 = floor [f] (17) 

where L is the length of the signal. It is apparent from (9) and 
(14) that xc and x„ are eigenvectors of Cc and C„. It is shown 
in 118] that, by choosing the eigenvectors corresponding to the 
largest eigenvalues of C* and C„, the error expression (3) is 
minimized. . .   . 

Although this technique produces a sequence that minimizes 
the error in (3), the solution is not unique. Since a multi- 
plication of the even and odd components of x(n) by the 
phase constants ac and a0 does not change the sequence's 
WVD, signal synthesis can only be achieved up to an arbitrary 
phase in both the even and odd components of the sequence. 
However, with a reference signal chosen as the original data 
sequence, it is possible to find the parameters ac and a„ by 
phase matching. That is 

ac = arctan 

Imag ][>(2n)x;(n) 
n 

Real 2>(2n)x;(n) 
n 

a„ = arctan 

Imag 

Real 

£a(2n + l)xS(n) 

£«(2n + l)x;(») 

(19) 

(18) 

where s(n) is the reference signal. 

III.  SELECTION OF THE SYNTHESIZED SIGNAL 

Two possible approaches apply t-f distribution synthe- 
sis techniques to interference mitigation for spread-spectrum 
communications. The first approach synthesizes the spread- 
spectrum signal, and correlates it with the PN sequence at 
the receiver, as shown in Fig. 1(a). The second approach 
synthesizes the interference signal from the t-f domain, 
subtracting it from the incoming data to suppress the jammer, 
as depicted in Fig. 1(b). 

The choice of one approach over the other depends on the 
ability to obtain an accurate synthesized signal. This requires 
the signal to be synthesized to have a t-f signature that clearly 
distinguishes it from other signal components. Also, phase 
matching and restoration of the synthesized signal should be 
feasible and properly accomplished. 

Fig. 2(aHc) shows an example of the WVD's computed 
separately for complex white noise, a complex DSSS signal, 
and a linear FM interference. Fig. 2(d) shows the WVD of 
the sum of all three components. One may conclude that 
synthesizing the spread-spectrum signal from the t-f domain 
should be avoided because of the following. 

1) It is difficult to distinguish between the noise and the 
spread-spectrum signal signatures in the t-f domain. 
Therefore, t-f synthesis of the DSSS signal does not 
reduce the effect of noise nor lead to enhanced SNR. 

2) Masking out the jammer by clipping or gating the high 
power values in the t-f domain may remove the main 
Jobe, but it leaves behind the sidelobes which may carry 
significant jammer power. 

3) The cross terms among the jammer, and the DSSS 
signal, noise, and jammer self-cross terms are often 
spread over the entire t-f domain, contaminating the 
spread-spectrum signal within large regions of time and 
frequency. 

4) Phase matching is often performed using the input 
data as a reference signal. Therefore, even with the 
assumption that the DSSS signal is perfectly synthesized 
up to a phase ambiguity, low desired signal power 
makes it difficult to arrive at the correct phase by simple 
matching to a data sequence in which the jammer is the 
dominant component. 

Accurate phase matching can therefore be obtained using 
the input data as a reference signal only through synthesis 
of the interference, provided that the JSR is relatively high, 
which is often the case. However, the effectiveness of phase 
matching is reduced with reduced jammer power. 

IV.  THE CONSTANT MODULUS PROJECTION OPERATOR 

Let PA define the constant modulus projection operator. 
When applied to the complex sequence x(n), the resulting 
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signal xA(n) retains the phase of each sample of x(n), but 
changes its amplitude to a constant value A. This is equivalent 
to projecting each sample of x(n) on the complex plane onto 
the closest point of a circle of radius A that is centered at 
the origin, as in Fig. 3. Significant reduction of noise may be 
achieved through this operation when applied to a signal that 
is known to be of modulus A whose phase is not significantly 
distorted or can be recovered by phase matching. 

The present t-f synthesis technique uses PA "> subtract 
an accurate estimate of the interference from the received 
signal prior to correlation with the PN sequence. Fig. 4(a) 
depicts the original time-domain chirp jammer signal, and 
Fig 4(b) is the synthesized interference estimate obtained 
from masking out the signal and noise components in the 
t-f domain where the JSR = 9 dB. The phases of the 
even and odd samples are not matched either absolutely to 
the original jammer or relatively to themselves. Projection 
PA of the synthesized jammer estimate produces the signal 

in Fig 4(c). Phase matching then produces the final jammer 
estimate of Fig. 4(d). Each stage of this estimation process is 
also represented in the complex plane, as seen in Fig. 5. K 
is clear that phase matching and constant modulus projection 
significantly improve the jammer estimate. 

Several factors may inhibit the effectiveness of PA. U «ne 
constant modulus value A is inaccurate, projection may induce 
noise into the estimate of the interference. Even with exact 
knowledge of A, the lack of an accurate phase reference may 
render projection ineffective. 

V. MuLTicoMPONENT JAMMERS 

When the jammer is composed of more than one component, 
t-f synthesis may prove effective, provided that each compo- 
nent is distinguishable in the t-f domain. In this; situation, 
each jammer component is individually synthesized from the 
t-f domain and subtracted from the received signal. The 
WVD of a jammer composed of two widely spaced linear FM 
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signals is shown in Fig. 6(a). Masking so as to retain only one 
of these components produces the distribution in Fig. 6(b). 
Synthesizing this masked distribution and performing the 
projection provides a good estimate for this specific jammer. 
The second jammer component is retained through masking, 
and is synthesized and projected in the same manner. 

With the availability of all jammer components, phase 
matching is performed. However, the monocomponent jam- 
meT signal equations (18) and (19) are no longer adequate. 
When the reference signal is composed of the sum of several 
individual components, corresponding components must be 
phase matched. In this case, a least squares approach must 
be used. If the even and odd components of the reference 
signal are denoted by the vectors se and »o. respectively, and 
are and *o denote matrices where each column is a nonphase- 
matched signal component, a vector containing the estimated 

phase constants of each even and odd component is obtained 
according to 

ae = arg[x*se] (20) 

and 

ao= arg|i^ so] (21) 

where z* denotes the pseudoinverse of z [20]. 
Each of the estimated jammer components is to be sub- 

tracted from the incoming data to provide an effectively 
jammer-free received signal. 

When masking out all but one of the interference terms, one 
should ensure that none of the jammer cross terms is included 
in the synthesis procedure. Inclusion of even a small fraction 
of these cross terms may induce other interference terms into 
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Fig. 3.   Constant modulus projection operation (P«) on the data sequence x(n). 

the desired jammer estimate, thus contaminating the overall 
jammer estimate and reducing system performance. 

VI. COMPUTATIONAL REQUIREMENTS 

In this section, the computational demands that the proposed 
al°orilhm places on the software-radio receiver are considered. 
As mentioned in Section 1, the motivation for using signal- 
processing techniques is to augment the processing gam of 
the spread-spectrum system without increasing the bandwidth. 
This improved performance does have a price, however, since 
the majority of the preprocessing techniques is computation- 
ally intensive. 

For the purpose of comparison, the spread-spectrum case 
with preprocessing disabled should be considered first. The 
DSSS signal is given by 

M 

bk(t) = £ Pk(n)g(t - nrc) 
n=l 

where Pk{n) represents the complex output sequence from the 
PN code generator for the fcth information bit MO. ™ä M ,s 

the PN sequence length. The chip pulse q(t) is of duration 
rc and unit energy. Assuming that there are M complex 
chips/bit and only one sample/chip, this decoder thus requires 
M complex multiplications and M - 1 complex addiüons 
to process each complex bit This translates into AM real 
multiplications and AM - 2 real additions, or approximately 

AM flops. 

It was shown in [17] that the pseudo-Wigner-V.lle dis- 
tribution can be realized with \M log2 M + IM complex 
multiplications and \M log, M complex additions at each 
point. Removing the deliberate windowing by considering the 
signal to be zero outside of the current bit removes M complex 
multiplications, and we are therefore left with Mz(log2 M+A) 
real multiplications and Af2(§ log2M + 2) real additions, or 
approximately M2(log2 M + 4) flops to achieve an M x M 
t-f representation of the received signal. 

To synthesize the jammer, the eigenvector corresponding to 
the largest eigenvalue must be determined for both Cc and 
C defined by (10) and (15). Using the methods outhned 
in"[19] for a K x K Hermitian matrix, this operation can 
be achieved in K2 + 2K flops, ignoring the calculation of 
an initializing vector. Therefore, the jammer estimate can 
effectively be synthesized from the Hermitian matrices Ct 

and Ce with P«2 + Pi + 2(P, + P«,) flops where Pt and P„ 
are as defined in Section II. Other methods can be used to 
find these eigenvectors as well, but many of these algorithm 
require 0{K3) operations. . 

In order to achieve the phase matching, ae and o«, m (18) 
and (19) must be determined and applied «o the sequences 
xJn) and xc{n) to produce the phase-matched estimate *(n). 
The determination of at requires 2P, real multiplications- 
and (2Pe - 2) real additions since it only involves real 
terms. Using similar methods for the determination of a„, 
the phase-matching operation may be achieved w.th a total of 
2PC + 2P„ + AM real multiplications and 2(Pe + P. + M - 2) 
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real additions, plus four additional flops for the computation 
of the two inverse tangents. 

It is straightforward to show that the projection operation 
takes at most 3M flops, and the subtraction of the jammer 
estimate from the received signal requires an additional 2M 
real additions. Finally, the 4M flops needed for the correlation 
are also needed for this algorithm. Therefore, the method 
described in this paper requires approximately M2(log2 M + 
|) + 17M flops to process and decode each bit 

As expected, the computational demands of the proposed 
algorithm increase significantly with added interference terms. 

When the jammer is composed of N distinct signals, the 
computations needed for Wigner analysis and correlation are 
unchanged, while the computations required by synthesis, 
projection, and jammer subtraction are obviously increased 
by a factor of N. The new phase-matching algorithm is 
simply a complex least squares operation that requires 
(4A/JV2 - 4N3ß) flops to determine the least squares 
solution [20], followed by 2N flops to extract the angular 
information and 4NM flops to adjust the phases. This 
produces a total of approximately Af2(log2 M + 4) + 
(A'/2)A/2 + 4N2M - (4N3/3) + 7NM + 4M flops to 
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process and decode each bit contaminated by multicomponent 

interference. . . 
As the interference excision techniques become less so- 

phisticated, the computational costs become less ^mandmg 
Methods that rely on the application of a five-tap notch filter 
Z the time domain |11J. IKl .15). Hfl ^ -J"? 
24M flops to filter and correlate the data f°r «ch b*•» 
addition to the cost of determin.ng the jammer IF. Wh« mas 
IF is found through TFD's. however [12], the computational 

requirements are on the order of M2(log2 M -M) + MAT. 
which is not significantly different than *«* ™ f«T*' 
methods presented in this paper. Placing multiple notches X 
the multicomponent jammer does not substantially change the 
complexity of the time-domain excision filter technique. The 
drawback, however, is a significant increase in the self-noise, 
rendering tins algorithm unsuitable for such an «™"™J; 
The computational costs for these algorithms are illustrated in 

Table I. 
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Fig. 6.   (a) WVD of interference composed of two terms. Note the Jammer crosslerms. (b) Only one jammer component retained. 

TABLE 1 
A COMPARISON OF THE COMPUTATIONAL 

BILINEAR BASED INTERFERENCE EXCISION 

COMPLEXITY OF TWO 
ALGORITHMS FOR DSSS 

Algorithm 
Approx. Number of flops 

required 

DS/SS. no preprocessing 4M 

This paper 

WVD calculation M^louM + 4) 

Synthesis (M/Zf + 2M 

Phase matching 6M 

Projection 3M 

Subtraction of jammer estimate 2M 

Correlation 4M 

Total M7(log2M + |) + 17M 

Multi-component Case 
M7(Iog2M + 4)*^M7 + 

4N*M ■ ^j- -f 7NM + 

4M 

5-lap notch filler wilh IF estimation via TFD M*(hg2M + 4) + 24M 

Multi-component Case ^{logjM + 4) + 24M 

VII. SIMULATION RESULTS 

This section presents the results of computer simulations 
for the methods introduced in this paper. Thirty-two chips/bit 
are taken at a sampling frequency of one sample/bit for 
all simulations. In each case, the jammer is a linear FM 
interference that sweeps the entire frequency band every bit 
period, with an additive zero-mean while Gaussian noise of 
SNR = 0 dB. 

Fig. 7 includes a benchmark for the other simulations by 
plotting the BER's against different JSR's for the case when 
the preprocessing using the l-f interference synthesis excision 
method is disabled. This allows interference mitigation to be 
performed using only the DSSS spreading-despreading oper- 
ations. As the power of the interference rises, the spreading 
gain loses its ability to compensate for the presence of the 
jammer in the receiver sign.il. and consequently, the BER 
increases. 

Fig. 7 also includes the BER curve where :i bro;id mask is 
applied in the proposed /.-/ synthesis excision melhod. This 
broad mask allows most of the interference sidclobcs to be 
included in the least squares synthesis equations (9) and (14). 
and therefore it is approximately equivalent lo performing "no 
masking." The monolone decreasing behavior of Ihis curve 
clearly defines a range of JSR over which Ihe constant modulus 
projection part of the proposed technique alone is sufficient lo 
yield significanl improvement over the benchmark case. 

The third BER curve in Fig. 7 shows Ihe improvement 
in system performance when a very narrow mask is applied 
around the mainlobe of Ihe interference. For JSR's between 
9 and 30, this method of masking produces excellent results 
since no errors were delected in 1.5 million trials. Unfortu- 
nately, as the JSR continues to rise, the removal of the jammer 
sidelobes induces enough error into the synthesis procedure 
that this method of masking is not as effective as the broad 
masking technique. However, increasing the resolution of the 
TFD by extending the number of chips per bit enlarges the 
range of JSR where the narrow masking technique outperforms 
Ihe broad masking method. 

It must be emphasized that proper masking in the t-f 
domain is crucial to producing the best estimate of the in- 
terference. The proper masking technique depends upon the 
magnitude of the jammer sidelobes in the *-/ domain relative 
to the TFD of the desired signal. For a given resolution of the 
TFD, it has been determined that the bit-error performance of 
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F»g. 7.   BER versus JSR for the preprocessing disabled and for ihe preprocessing enabled cases. 

the spread-spectrum system can be maximized by using the 
appropriate masking techniques for a given range of JSR. 

For all simulations, the estimated modulus value used by the 
projection operator was taken by averaging the modulus of the 
received signal over each time sample. At low JSR's, enabling 
preprocessing hinders the DSSS system since the jammer 
estimate is highly contaminated by the signal and noise. 
Subtracting this poor jammer estimate actually increases the 
noise in the signal. It is apparent that interference mitigation 
using t-f synthesis prior to correlation with the receiver 
PN sequence stans to produce improved results over the 
preprocessing disabled case at a JSR of approximately 6 dB, 
depending on the nature of Ihe interference. 

Jt should be noted that some simulations used 63 chips/bit. 
However, with this much processing gain, no errors were 
produced in 200000 trials at any of the given JSR values 
when preprocessing was enabled. 

VIII. CONCLUSIONS 

In this paper, the mitigation of narrow-band nonstationary 
interference in DSSS communication systems is achieved by 
subtracting an estimate of the interference from the received 
signal. This estimate is obtained by masking out the signal and 
noise components of the received data in the time-frequency 
domain, and synthesizing the result. When the interference is 
known a priori to be a polynomial phase, which is uniquely 
described by its instantaneous frequency characteristics, an im- 
proved estimate can be generated by projecting the synthesized 
jammer estimate onto a circle of its constant modulus. The 
direct synthesis of the spread-spectrum signal, rather than the 
interference, from the t-f domain is shown to be undesirable 
due to lack of a clear DSSS t-f signature, the retention of the 
jammer power in its sidelobes, cross terms of the signal, noise, 
and jammer spreading over Ihe entire t-f domain, and the loss 

of a meaningful phase reference. A method for extending this 
technique to the multijammer scenario where each term of the 
interference is of constant modulus is also presented. 

Simulations were performed using two masking techniques. 
It was shown that the lowest bit-error rates are obtained 
when the jammer estimate is the result of both a phase- 
matching and a projection operation on a correctly masked 
t-f distribution. The implementation of this technique in the 
simulations showed that different masks should be applied to 
the TFD of the received signal, depending on the relative 
power of the interference. 

In software-radio architectures, the system has the discretion 
to invoke the proper algorithms, such as the one presented 
in this paper, should a specific jammer type appear. When 
no interference signal is present, the receiver should disable 
preprocessing of the received signal, and rely solely on the 
spreading gain inherent in DSSS. As the nature of the inter- 
ference changes and a jammer appears, the receiver can lake 
some corrective action and change modes, depending on the 
situation. When a single jammer that is of constant modulus 
is detected, the method described in this paper becomes 
applicable. On the other hand, when the jammer is amplitude 
modulated, more appropriate algorithms may be invoked. 
Although these interference excision techniques are computa- 
tionally demanding, the processing power of the spare channels 
on a multiband, multimode system may be dedicated to them 
when only one channel is in use. By so doing, a signal lost in 
broadband nonstationary interference may often be recovered. 

REFERENCES 

|l) M.fLSimoo et al.. Spread Spectrum Communications. RockviBe, MD: 
Computer Science Press, 1985. .    .     . 

|21 I_ Milsiem and R. lüis. "Signal processing for interference rejection » 
spread spectrum communications." IEEE Signal Processing Mag., vol. 
3. pp. 18-31. Apr. 1986. 

169 



IEEE JOURNAL ON" SELECTED AREAS TN COMMUNICATIONS. VOL. 17. NO. 4. APRIL 19» 

P] L. B. Milsleiri "Interference rejection techniques in spread spectrum 
comnxmicadons." Proc IEEE, pp. 657-671, June 1988. 

14] J. Proakjs and M. Salehi, Communication System Engineering.   Engle- 
wood Cliff», NJ: Prentice-HaiL 1994, Sect II. 

(5] J. Kclchum and J. Proakjs, "Adaptive algorithms for estimating and 
suppressing narrowband interference in PN spread spectrum systems," 
IEEE Trans. Commtou, pp. 915-924, May 1982. 

[6] L, A. Rusch and H. V. Poor, -Narrowband interference suppression in 
CDMA spread-spectrum communications," IEEE Trans. Common., vol. 
42, pp. 1969-1979. Apr. 1994. 

(?) H. V. Poor and X. Wang, "Adaptive suppression of narrowband digital 
interferers from spread-spectrum signals," Wireless Personal CommurL, 
1997. (Also see Proc. ICASSP96. Atlanta, GA, May 1996.) 

18] M. Medley, G. Saulnier, and P. Das, "Applications of the wavelet 
transform in spread spectrum communications systems," presented at 
SPIE, Wavelet AppI, Orlando, FL, Apr. 1994. 

[9] M. Tazebay.and A. Akansn, "Adaptive subband transforms in time- 
frequency «risers for DSSS communication systems," IEEE Trans. 
Signal Processing, pp. 2776-2782, Nov. 1995. 

[10] S. Roberts and M. Amin, "Linear vs. bilinear time-frequency methods 
for interference mitigation in direct sequence spread spectrum communi- 
cation systems," in Proc. Asilomar Conf. Signals, SysL, CompuL, Pacific 
Grove. CA. Nov. 1995. 

(11) S. Tyler and M. Amin, "Mitigating interference in direct sequence spread 
spectrum communication systems," Rome Lab. Tech. J., voL I, June 
1995. 

[12] M. Amin, "Interference mitigation in spread spectrum communication 
system using time-frequency distributions," IEEE Trans. Signal Process- 
ing, vol. 45. pp. 90-102, Jan. 1997. 

[13] B. Boashash, "Estimating and interpreting the instantaneous frequency 
of a signal. Pans I and 2," Proc. IEEE. vol. 80, Dec. 1990. 

114] M. G. Amin. A. Lindsey. and C. Wang. "On the application of lime- 
frequency distributions in the excision of pulse jamming in spread 
spectrum communication systems," presented at the IEEE Workshop 
Statistical Signal and Array Processing, Greece, June 1996. 

115) C. Wang and M. Amin, "Performance analysis of instantaneous fre- 
quency based interference excision techniques in spread spectrum com- 
munications." IEEE Trans. Signal Processing, vol. 46. pp. I—13. Jan. 
1998. 

116]  . "Performance analysis of interference excisions in spread spec- 
trum communications based on instantaneous frequency estimation." in 
presented at the 4ih Int. Symp. Signal Processing and AppI., Australia. 
Aug. 1996. 

|I7J T. A. C. M. Claasen and W. F. G. Mecklenbrauker. "The Wigner 
distribution—A tool for time-frequency signal analysis; Part II: Discrete 
lime signals," Phillips J. Res., vol. 35, pp. 276-300. 1980. 

118) G. F. Boudreaux-Banels and T. W. Parks, "Time-varying filtering and 
signal estimation using Wigner distribution synthesis techniques." IEEE 
Trans. Acousl., Speech. Signal Processing, vol. ASSP-34. pp. 442-451. 
June 1986. 

119] D. Tufts and C. Melissinos, "Simple, effective computation of principal 
eigenvectors and their eigenvalues and application to high-resolution 
estimation of frequencies," IEEE Trans. Acoust., Speech. Signal Pro- 
cessing, vol. ASSP-34, pp. 1046-1053, Oct. 1986. 

(20J G. Golub and C. Van Loan, Matrix Computations.    Baltimore, MD: ■ 
Johns Hopkins Univ. Press. 1984. 

Stephen K. Lach was borri in Colorado Springs, 
CO, in 1974. He received the B.S.E.E. and MS. 
degrees in 1996 and 1998, respectively, from VB- 

, lanova University. 
Since his graduation, he has served as a Lieu- 

tenant in the U.S. Air Force, working as an Engineer 
at the Air Force Research Laboratory at Eglin AFB, 
FL. He is currently working on antijara technolo- 
gies for GPS-based systems, and his main interests 
include time-frequency signal representations, array 
processing techniques, and GPS technologies. 

Moeness G. Ami» (S,82-M*83-SM,9I) received 
the Ph-D. degree in electrical engineering in 1984 
from the University of Colorado, Boulder. 

He has been on the faculty of the Department 
of Electrical and Computer Engineering at Vil- 
lanova University since 1985. where he "rs now i 
Professor. His current research interests are in the 
areas of rime-frequency analysis, spread-spectrum 
communications, smart antennas, and blind signal 
processing. 

From 1995 lo 1997, Dr. Amin was an Associate 
Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING and a member of 
the Technical Committee of the IEEE Signal Processing Society on Statistical 
Signal and Array Processing. He is currenlly a member of the IEEE Signal 
Processing Society Technical Committee on Signal Processing for Communi- 
cations. He was the General Chair of the 1994 IEEE International Symposium 
on Time-Frequency and Time-Scale Analysis. He is the General Chair of 
the 2000 IEEE Workshop on Statistical Signal and Array Processing. He is 
the recipient of the 1997 IEEE Philadelphia Section Award for "Outstanding 
Intellectual and Organizational Contributions to the IEEE Philadelphia Section 
in the Area of Signal Processing." He is also the recipient of the 1997 
Villanova University Outstanding Faculty Research Award. 

Alan R. Lindsey (S*84-M'88) was born in Ohio in 
1966. He received the B.S.E.E.. M.S.E.E.. and Ph.D. 
degrees in 1989. 1991. and 1995. respectively, from 
Ohio University. Athens. 

Since 1995. he has served the U.S. Air Force as a 
Civilian Research Scientist lor Ihe Information Grid 
Directorate of Ihe Air Force Research Laboratory in 
Rome. NY. He is currenlly responsible for basic 
research into Ihe problems of interference miti- 
gation in spread-spectrum communication signals 
and computationally feasible Irellis coding in high- 

dimensional signal spaces. His main interesls include digital communication 
theory, coding and information theory, digital signal processing, adaptive 
signal processing, digital control systems, wavelet and muliiresolution theory, 
and applications of lime-frequency signal representations. 

170 



IEEE Workshop on Digital Signal Processing, Bryce Canyon National Park, Utah, August 1998. 

A COMPARISON BETWEEN TWO TIME-FREQUENCY BILINEAR TRANSFORMS FOR 
INTERFERENCE EXCISIONS IN SPREAD SPECTRUM COMMUNICATIONS 

Stephen R. Lach, * Alan R. Lindsey, tt and Moeness G. Amitf 

t Department of Electrical and Computer Engineering 
Villanova University 
Villanova, PA 19085 

email: slach/moeness@ece.vill.edu 

ABSTRACT 

In this paper, a comparison is made between two recently 
proposed techniques that utilize time-frequency (t-f) bilinear 
transforms to mitigate interference in direct sequence spread 
spectrum communications. The first method uses the jammer 
instantaneous frequency (IF) as obtained from a lime-frequency 
distribution (TFD) to construct an open loop adaptive filter that 
places a notch at the jammer IF. The second method synthesizes a 
least squares estimate of the interference from the t-f domain. 
This jammer estimate is then improved by a constant modulus pro- 
jection operation, after which it is directly subtracted from the 
received signal in the time domain. A review of each method is 
presented, and bit error performance for each technique is dis- 
played and explored for several jamming environments. Compu- 
tational requirements for both methods are derived. 

I. INTRODUCTION 

Direct-sequence spread spectrum (DSSS) is a technique of 
communication whereby the bandwidth of the transmitted wave- 
form is intentionally made much wider than would be necessary to 
transmit the information over the channel. This spreading is 
accomplished by superimposing upon the data bits a high-rate 
spreading sequence, which is typically a pseudorandom noise 
(PN) sequence. The advantage of using this excess bandwidth is 
that it makes the system less sensitive to many types of interfer- 
ences. In fact, any level of interference rejection can be achieved 
by using sufficient processing gain. This, however, may entail 
increasing the bandwidth beyond the limits of the available spec- 
trum. Therefore, signal processing techniques have been used in 
conjunction with the DSSS receiver to augment the processing 
gain, permitting greater interference protection without an 
increase in bandwidth. (For more details of the discussions, see 
the tutorial [7]).   

Recently, bilinear time-frequency distributions (TFDs) 
have been proposed for nonstationary interference excision in 
DSSS communications. Over the past two years, two approaches 
based on TFDs have shown great promise in improving the spread 
spectrum receiver signal-to-noise ratio (SNR) and reducing the 
BER significantly beyond what is achieved by traditional excision 
methods [2,6]. Both techniques rely on the localization properties 
of the TFD for interferers with time-varying characteristics, spe- 
cifically those which are uniquely characterized by their instanta- 
neous frequencies (IF). The class of jammers considered in this 
paper are polynomial phase signals with known constant modulus. 
The two methods are reviewed in the following sections. 

^ Air Force Research Laboratory / IFGC 
525 Brooks Road 
Rome, NY 13441 

email: lindseya@rl.af.mil 

II. THE NOTCH FILTER METHOD 
In [1,2], the notch filter method of interference excision in 

DSSS using time-frequency distributions (TFDs) is introduced. 
This approach characterizes the unwanted interference by estimat- 
ing its instantaneous frequency (IF) at each time sample through a 
bilinear t-f transformation. This information is then used to con- 
struct an open loop adaptive filter that places a frequency varying 
notch at the estimated jammer IF, thus rendering the filter output 
essentially jammer-free. A block diagram illustrating this proce- 
dure is shown in Fig. 1. In the original work, filters that place 
either one or two zeros at the jammer IF were derived and ana- 
lyzed for both real and complex scenarios [1], but subsequent 
work in this area has focused primarily on a real interference 
[9,10]. However, since it is generally recommended that TFDs 
operate on the analytic signal rather than the real one [2], and 

Irani 
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Figure 1. Open loop adaptive (Notch) filter technique 

since the WVD synthesis technique operates on a complex inter- 
ference, only the complex excision filter will be considered in this 
paper. Therefore, instead of the familiar three and five coefficient 
real filters, two and three coefficient complex filters will suffice. 

For the case of a complex jammer of IF (fl0, the single-zero 

notch filter is defined as [I] 

tf(z) = l-z-V0>* 0). 
The corresponding impulse response is 

h{n) = S(n)-/*#8(/i-l') (2). 
Assuming a constant modulus jammer of fixed frequency (ty, and 

phase (p, 

J(n) = Ae \i) 
it was shown in [1] that the receiver signal-to-noise ratio is 
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SNR = 
L-1+(2L-1)02   l+2o2 

(4) 

which is only dependent upon the number of chips/bit (L) and the 

noise power (o2). Unlike the real excision filter case, the receiver 
SNR of the complex filter is frequency independent 

The double-zero complex excision filter is the convolution 
of (1) with itself; that is 

H{z) = (1-z   e    ) 

The corresponding impulse response is 

(5). 

h(n) = 5(D) - 2eia>'Hn - 1) + e^'Hn - 2)       (6). 

Assuming the same jammer as in (3), the SNR is modified to 

SNR- 
5L-6 + (6L-6)o2   5 + 6a2 

(7). 

Although this method of jammer excision promises com- 
plete removal of the interference, there are still two drawbacks to 
its use in practical applications. Erst, these filters inherently pro- 
cess a portion of the desired signal, inducing an unwanted correla- 
tion (commonly referred to as "self-noise") into the spreading PN 
sequence. Second, this method relies on the fact that the IF of the 
jammer is constant throughout the filter duration. In situations 
where the jammer IF is rapidly varying, this assumption no longer 
holds, and decreased performance is expected. Finally, inaccura- 
cies in the IF estimate may cause the filter zeros (notches) to be 
placed at an incorrect frequency, thus allowing a percentage of the 
jammer power to escape the filtering altogether. For these last two 
reasons, and those stated in reference [2], the double-zero filter, 
whose bandwidth is wider than that for a single zero, should out- 
perform the single-zero filter in all cases except for that of a pure 
sinusoidal interference. 

It should be noted that in [9], the real filter analysis was 
expanded to account for inaccuracies in the estimation of the jam- 
mer IF, and in [10], a notch depth control parameter was intro- 
duced to combat the detrimental effects of self noise at low 
jammer-to-signal ratios (JSRs). Although, both of these discus- 
sions only dealt with the case of a real jammer, the development 
of these techniques in a complex environment is feasible and 
straightforward. 

m. THE WVD SYNTHESIS/PROJECTION 

METHOD 

In this method, time-varying filtering is achieved by mask- 
ing the regions of high power concentration in the l-f domain, fol- 
lowed by a synthesis procedure to recover the jamming signal. 
This constructed jammer is then subtracted from the incoming 
data to effectively remove the interference component in the time 
domain, as shown in Eg. 2. 

Of particular interest to this technique are jammers having 
the property of a constant modulus. In this case, the jamming sig- 
nal can be estimated more accurately through a two stage process. 
Erst, an estimate of the jammer is generated by masking out the 
signal and noise components of the received signal in the t-f 
domain and then performing a least-squares synthesis procedure. 
This estimate is then improved by projecting each sample of the 
synthesized signal on a circle representing the constant modulus 
of the actual jammer. By retaining the phase and performing this 
projection at each sample of the synthesized signal, an improved 
estimate of the jammer is obtained. When this new interference 
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Figure 2. WVD Synthesis/Projection Jammer Excision 

estimate is then subtracted from the received signal, a drastic 
enhancement in the DS/SS system performance is achieved [6]. 

The synthesis problem is finding the sequence x(n) whose 
Wigner-Ville Distribution (WVD) is closest in some sense to a 
desired real time-frequency distribution Y(n,a) that may or may 
not represent a valid WVD [3]. Therefore, a minimization of 

K/2 
£W = Xj J |r(n,<o)-lVx(n,CD)|2 (8). 

-K/2 
is desired. It was shown in [3] that the even and odd indexed sam- 
ples of the sequence x(n) could be generated independently by 
solving the equations 

Cexe = 4lx«| xe (9) 

and 

CoX0 = 4Uol xo (10) 

where xe and x„ are the eigenvectors corresponding to the largest 

eigenvalues of Ce and C„ in each equation. Ce and C„ are 

obtained from Y(n,w) according to 

Ce{p + 1,m + 1) = y(m + p,p-m) + y*{m + p,m-p) (11) 

and 
C0(p,m) = y(m + p-},p-m) + y*(m + p-l,m-p) (12) 

where 
K/2 

1   r „ J<»*d(ij y(n,m) = ±   f  Y(n,ti>)t] 

71    J (13). 
-K/2 

Although this technique produces a sequence that mini- 
mizes the error in (8), the above solution is not unique. Since a 
multiplication of the even and odd components of x(n) by the 
phase constants ae and a0 does not change the sequence's WVD, 
signal synthesis can only be achieved up to an arbitrary phase in 
both the even and odd components of the sequence. However, 
with the presence of a reference signal often chosen as the original 
data sequence, it is possible to find the parameters at and a0 that 
bring the synthesized signal as close as possible to the reference 
signal by phase matching. That is 

(14) "e = arg[X*(2B>x«*(»)] 

°o = arg[Xj(2n + l)x0*(n)J 05) 

where s(n) is the reference signal. 
For the projection portion of this technique, P^ is defined 

as the constant modulus projection operator which when applied 
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to the complex sequence x(n), the resulting signal, xA(n), retains 

the phase of each sample of x(n), but changes its amplitude to a 
constant valued [6]. 

It must be emphasized that there are several factors that 
may inhibit the effectiveness of projecting the jammer estimate 
onto a constant modulus circle in order to produce an improved 
estimation. If the value A of the modulus chosen is inaccurate, the 
projection operation may actually induce extra noise into the esti- 
mate of the interference. Also, even with the exact knowledge of 
A, if the phase of the estimate is inaccurate, projection may prove 
ineffective. 

IV. BIT ERROR PERFORMANCE 

Computer simulations for the methods considered in the 
preceeding sections are now presented. The L=23 chips/bit are 
taken at a sampling frequency of 1 sample/bit for all simulations. 
In each case, the interference terms are polynomial phase signals 
with constant amplitude. A zero-mean, white Gaussian noise is 
added in all cases at an SNR = 0 dB. Although practical applica- 
tions of these excisions would demand a much larger spreading 
gain, this reduced number was used in the simulations to lower the 
bit error rates (BERs) into a reasonable range. 

Figure 3 (a) gives a benchmark for the rest of the simula- 
tions by plotting the BERs against different JSRs for the non-pro- 
cessed case of a typical monotone interference. Also included in 
Fig. 3 (a) is the case of a fixed frequency complex sinusoidal jam- 
mer filtered either by a two-tap filter or a three-tap filter. As 
expected, the two-tap filter with the thinner notch outperforms the 
three-tap filter, as less self-noise is induced on the desired signal 
in the single-zero case. 

Figure 3 (b) uses the same interference, but this time the 
received signal is processed using the TF synthesis/projection 
technique. Plots are included for the cases of a narrow mask with- 
out projection, and a narrow/broad mask with projection. 
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Figure 3. Bit error plots for the case of a complex sinusoidal 

jammer 

Figure 4 introduces a nonstationary interference in the 
form of a linear FM that sweeps one-half of the frequency range 
in each bit duration. Since the IF is no longer constant from sam- 
ple to sample, the performance of the notch filter (Fig. 4 (a) )suf- 
fers quite dramatically, although the three-tap filter handles the 
frequency changes more gracefully than the two-tap filter. 

Figure 4 (b) shows that the WVD Synthesis technique 
handles the chirp interference almost as well as the tone jamming 
case. For a linear FM jammer, the WVD transforms the interfer- 
ence into a series of impulses, and self crossterms are not intro- 
duced. This permits an extremely accurate t-f representation of 
the received signal, and proper masking is feasible. 
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Figure 4. Bit error plots for the case of a complex chirp 

jammer 
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Figure 5. Bit error plots for the case of a third order 
polynomial phase jammer 

In Fig. 5, the interference used is a third order polynomial 
phase signal with a parabolic t-f signature. In this case, the per- 
formance of the notch filters still suffer severely at high JSRs, but 
the performance of the WVD synthesis method is still surpris- 
ingly good. However, due to the nonlinearity of the IF of the jam- 
mer, proper masking in this case is difficult, as it becomes hard to 
distinguish jammer self crossterm regions (which should be 
retained) from signal and noise regions (which should be masked 
out). However, through the use of a broad mask, especially at 
high JSRs, improved system performance may still be obtained. 

V. COMPUTATIONAL DEMANDS 

In order to provide a more complete comparison between 
the direct subtraction by synthesis method and the open-loop 
adaptive filtering method, an analysis of computational 
requirements is necessary. The authors do not attempt to 
provide a rigorous analysis adhering to the standards of 
complexity theory, nor is the subject of efficiency optimization 
addressed. In the following, computational complexity will be 
measured by floating point operations, or "flops", which are 
taken to be single kernel operations - a real multiplication or 
addition. Implementation on architectures that operate on 
complex numbers as efficiently as real ones is not considered. In 
this regard, some perspective on the practical utility of such a 
notion is provided by Golub and Van Loan's excellent reference 
[5]. The receivers discussed here decode one bit at a time, so the 
computational requirements are neatly fenced off on bit 
boundaries. Thus, for the following calculations, the number of 
samples per bit, M, which encapsulates the spread spectrum chip 
rate and sample rate, is the only parameter that affects the 
computational load of either method 

Now, each frequency slice of a pseudo-WVD for an M- 
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point signal (one bit) can be accomplished with .25Mlog2M + 
2U complex multiplications and .5Mlog2M complex additions. 
Since this application precludes the use of pseudo-Wigner 
methods, it is assumed that each bit is padded with enough zeros 
on both sides to avoid deliberate windowing, so this essentially 
eliminates M complex multiplications. With 6 flops per complex 
multiplication and 2 flops per complex addition, the total flop 
count for the WVD is M2(2.5log2M+6). This is the dominant 
process and it, together with the 2M flops required for 
application of the spreading sequence, comprises the two 
common computations. 

The unique processes of the synthesis method are 
considered next. The synthesis procedure is equivalent to two 
Mß-length eigenvector (only the principal component) 
calculations. Using a Lanczos-type algorithm [8] the flops 
required for each is JM2 +6M, for a total of M2+12M flops. 
Phase matching, as described previously, is directly figured to 
require 8M flops for even and 8M flops for odd components, 
plus an additional 6M flops for applying these phases - a total of 
22M flops. The projection of an M-point complex signal to 
some constant modulus A is accomplished via a three step 
process. First the ratio of the real and imaginary components are 
processed with tangent to determine phase, then each component 
is scaled via trigonometric identities such that the modulus is A. 
Trig functions are typically accomplished with lookup tables and 
so do not contribute to flop count, hence the total for the 
projection is 3M flops. Subtraction of the synthesized jammer 
from the received signal is obviously a 2M flop process, and the 
last step of correlation with PN sequence is easily shown to take 
8M flops. The total flop count for this method is then 
47M+M2((2.5)log2M+7). 

In the notch filtering approach, using complex-coefficient 
filters with N taps, the correlation is shown to involve N complex 
multiplications and N-] complex adds => 8N-2 flops, for each 
point in the M-point output sequence. Thus, the two and three 
tap filters will require 14M and 22M flops respectively. The 
other major processing required for this approach is the 
calculation of WVD, shown before. Thus the total computations 
required for this method is either TFD+J4M or TFD+22M. 
Now, it becomes clear that the filtering approach has only a 
slight advantage over direct subtraction, even at very small M. 
This advantage disappears quickly for any realistic value of M, 
say 64 or higher. This is illustrated clearly in Eg 6. 
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Figure 6. Computational Requirements vs. log2(iW) 

VI. CONCLUSIONS 

Through bit error comparisons, it has been shown that the 
WVD synthesis jammer excision technique significantly outper- 
forms the notch filtering method for cases in which the frequency 
of the interference changes rapidly with time. Although the WVD 
synthesis method performs best when the jammer can be charac- 

terized by a first order polynomial phase signal with constant 
amplitude, adequate results are obtained even with the presence of 
self-crossterms or without the use of the projection operator. The 
reason for the unsatisfactory performance of the notch filter tech- 
nique in the jammer environments considered in this paper is that 
the assumption of a constant frequency being maintained through- 
out the duration of the filter is no longer valid. However, for sin- 
gle tone, slowly varying chirps and frequency hopping interfering 
scenarios, the notch filter technique may provide adequate results. 
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Algorithm Number of flops required 

DSSS, no preprocessing 2M 

WVD calculation M2{2.5logtfM)+6) 

Synthesis (eigen-analysis) M2+12M 

Phase matching 22M 

Projection 3M 

Subtraction of jammer estimate 2M 

Correlation 8M 

Total 1^(2.5 Iog2(M)+7)+47M 

2-lap complex notch filler with IF 
estimation via TFD 

TFD+14M 

3-tap complex notch filter with IF 
estimation via TFD 

TFD+22M 

Table 1: Computational Costs 

174 



IEEE International Conference on Acoustics, Speech, and Signal Processing, Seattle, WA, May 1998. 

BROADBAND NONSTATIONARY INTERFERENCE EXCISION FOR SPREAD SPECTRUM 
COMMUNICATIONS USING TIME-FREQUENCY SYNTHESIS 

Stephen R. Lach, Moeness G. Amin 
Department of Electrical and Computer Engineering 

Villanova University 
Villanova, PA 19085 

Alan R. Lindsey 
Rome Laboratory / C3BB 

525 Brooks Road 
Rome, NY 13441 

ABSTRACT 

A new method is introduced for interference excision in spread 
spectrum communications. Time-frequency synthesis techniques 
are used to synthesize the nonstationary jammer from the time- 
frequency domain using least-squares methods. The synthesized 
jammer is then subtracted from the incoming data in the time 
domain, leading to increased signal to interference ratio at the 
input of the correlator. The paper focuses on jammers with con- 
stant modulus where the jamming signal is a polynomial phase. 
With this apriori knowledge, the jammer signal amplitude is 
restored by projecting each sample of the synthesized signal to a 
circle representing its constant modulus. With the phase matching 
provided by the least-squares synthesis method and amplitude 
matching underlying the projection operation, the paper shows a 
significant improvement in receiver performance/bit error rates 
over the case where no projection is performed. 

I. INTRODUCTION 

One of the primary motivations for direct sequence (DS) 
spread spectrum (SS) communications is that of interference miti- 
gation. Several past contributions deal with the suppression of 
narrowband interference [7,8], and approaches for broadband 
interference excision based on time-frequency analysis have also 
been considered [ 1,2,6]. The recent development of bilinear (qua- 
dratic) time-frequency distributions (TFDs) for improved signal 
power localization in the time-frequency plane has motivated sev- 
eral new approaches for nonstationary interference excision in 
spread spectrum communications [1,3]. An implementation of an 
interference excision system using time-frequency distributions 
(TFDs) to determine the jammer IF has been thoroughly discussed 
[9]. However, this technique also creates a significant amount of 
self noise that forms an upper bound on the maximum attainable 
value of the correlator SNR, and in many cases the use of these fil- 
ters makes the performance worse than when the preprocessing is 
disabled. 

In this paper, the time-frequency (t-f) distribution is used 
to the fullest extent as a powerful tool for depicting a locally nar- 
rowband (FM, hopped, chirp, etc.) jammer over time and fre- 
quency. Since the interference is characterized by instantaneous 
frequency, its signature in the time-frequency domain is distinct 
from those of the noise and the spread spectrum signal, which 
have characteristically flat spectra by design. Therefore, time- 
varying filtering is achieved by masking the regions of high power 
concentration in the t-f domain, followed by a synthesis technique 
to recover the jamming signal. This constructed jammer is then 
subtracted from the incoming data to remove the interference 
component in the time domain. 

Of particular interest in this paper are jammers with the 
constant modulus property. In this case, the jamming signal can 

be estimated more accurately through a two stage process. First, 
an estimate of the jammer is generated by masking out the signal 
and noise components of the received signal in the t-f domain and 
then performing a least-squares synthesis procedure. This esti- 
mate is then improved by projecting each sample of the synthe- 
sized signal on a circle representing the constant modulus of the 
actual jammer. By retaining the phase and performing this projec- 
tion at each sample of the synthesized signal, we obtain an 
improved estimate of the jammer, which when subtracted from the 
received signal, a drastic enhancement in the DS/SS system per- 
formance is achieved. 

II. TIME-FREQUENCY SYNTHESIS 

The Wigner-Ville Distribution (WVD) WJn.a) of the dis- 

crete-time signal 4n) is defined by [5] as 

-jka 0) Wx(n,<0) - 2 £ x(n + k)x*(n-k)e 

* = — 
The synthesis problem is finding the sequence x(n) whose WVD is 
closest in some sense to a desired real time-frequency distribution 
Y(n,w) that may or may not represent a valid Wigner-Ville distri- 
bution. 

If Y(n,v>) is indeed a valid Wigner-Ville distribution, a 
direct calculation of the corresponding time-domain sequence x(n) 
can be accomplished according to [5] 

n/2 

x(n + k)f(n-k) = ±   j   Wx(n,a)e
,2kad<0 (2) 

-it/2 

If, however, Y(n,to) is not itself a valid WVD, we then wish 
to find a sequence x(n) whose WVD best approximates Y(n,m). 
This problem is formulated and solved in a least-squares sense by 
minimizing [4] 

K/2 
£W = Zj J |r(«.ü>)-H>,co)|2 (3) 

"    -x/2 
It was shown in [4] that the even and odd indexed samples of the 
sequence x(n) could be generated independently by solving the 

equations 

Cexe = 4|*e| xe (4) 

and 

This work supported by Rome Lab, contract #F30602-96-0077 

C0x0 = 4|;r0l x0 (5) 

where Xj and x0 are the eigenvectors corresponding to the largest 

eigenvalues of Ce and C0 in each equation. Ct and C0 are 

obtained from Y(n.a) according to 

Ce(p + 1, m + 1) = y(m + p,p-m) + y*(m + p,m-p)    (6) 

and 
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C0(p, m) = y(m + p -hp- -m) ty*(m + P 
where 

x/2 

y(n, m) = il y(«, co)^ 1(0 

l,m-p)   (7) 

(8) 
-x/2 

The desired sequence x(n) can then be recovered from 

xe(n) = jr(2n) (9) 

and 

x0(n) = Jt(2n + 1) (10) 

Although this technique produces a sequence that mini- 
mizes the error in (3), the above solution is not unique. Since a 
multiplication of the even and odd components of x(n) by the 
phase constants at and aB does not change the sequence's WVD, 
signal synthesis can only be achieved up to an arbitrary phase in 
both the even and odd components of the sequence. However, 
with the presence of a reference signal often chosen as the original 
data sequence, it is possible to find the parameters at and a0 that 
bring the synthesized signal as close as possible to the reference 
signal by phase matching. That is 

'lmag^£s(2n)xe*(n)] 

Real^£s(2n)xe*{n)] 
A 

(11) 

(12) 
W[5>(2„-1 )*<,*(")] 

where s(n) is the reference signal. 

III. SELECTION OF THE SYNTHESIZED SIGNAL 

Two possible approaches can be adapted in the application 
of t-f distribution synthesis techniques in interference mitigation 
in spread spectrum communications. The first approach is to syn- 
thesize the spread spectrum signal and correlate it with the PN 
sequence at the receiver, as shown in Fig (1-a). In the second 
approach, the jammer signal is synthesized from the t-f domain 
and then subtracted from the incoming data to remove, or at least 
reduce, the jammer contamination of the desired signal, as 
depicted in Fig (1-b). 

The preference of using one approach over the other 
depends on the ability to obtain a synthesized signal which is a 
good copy of its correspondence in the input data. This requires 
the signal to be synthesized to have a clear t-f signature that dis- 
tinguishes it from other components of the received data. Also, 
phase matching and restoration of the synthesized signal should 
be properly accomplished. 

Figure 2 (a,b) shows an example of the Wigner-Ville dis- 
tributions computed separately of a complex DS/SS signal and a 
linear FM interference. It is straightforward to conclude that syn- 
thesizing the spread spectrum signal from the t-f domain should 
generally be avoided due to the following reasons: 

1) It is very difficult to distinguish between the noise and 
the spread spectrum signal signatures in the time-frequency 
domain. Therefore, time-varying filtering does not reduce the 
effect of noise or enhance the SNR. 

2) Masking out the jammer by clipping or gating the high 
power values in the t-f domain may very well remove the main 
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Fig. 1 Two approaches for interference mitigation in DS/SS 
communication systems (a) synthesizing the desired signal (b) 
synthesizing the interference 

Fig. 2  (a) WVD of the DS/SS signal, L=128 (b) WVD of the 
chirp interference 

lobe, but it leaves behind the sidelobes which carry significant 
jammer power. 

3) The crossterms between the jammer and both the DS/ 
SS signal and noise as well as the jammer self crossterms are 
often spread over the entire t-f domain, contaminating the spread 
spectrum signal within large regions of time and frequency. 

4) Phase matching is often performed using the input data 
as a reference signal. Therefore, even with the assumption that 
the DS/SS signal is perfectly synthesized up to a phase ambiguity, 
the low desired signal power will make it very difficult to arrive at 
the correct phase by a simple matching to a data sequence in 
which the jammer is the dominant component. 

Proper phase matching can therefore be obtained using the 
input data as a reference signal only through the second approach, 
provided that the JSR is relatively high, which is usually the case. 
It is expected, however, that the effectiveness of phase matching 
reduces with reduced jammer power. 

IV. CONSTANT MODULUS PROJECTION 

Let Pyj define the constant modulus projection operator 
which when applied to the complex sequence x(n), the resulting 
signal, xA{n), retains the phase of each sample of x(n), but changes 
its amplitude to a constant value A. This is equivalent to project- 
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ing each sample of xfn) on the complex plane onto the closest 
point of a circle of radius A that is centered at the origin, as 
depicted in fig. 3. Significant reduction of noise may be achieved 
through this operation when it is a applied to a signal that is 
known to be of modulus A, and whose phase is not significantly 
distorted. 

Rot 

Fig. 3 Constant modulus projection operator (PA) on the data 

sequence i(n) 

In the excision of interference in DS/SS systems, it desir- 
able to subtract an accurate estimate of this interference from the 
received signal prior to correlation with the PN sequence in order 
to enhance system performance. As stated in the previous section, 
a good estimate for this interference may come from synthesizing 
a masked t-f representation of the received signal. Fig. (4-a) 
depicts the original time-domain chirp jammer signal, and Fig. (4- 
b) is the synthesized interference estimate obtained from masking 
out the signal and noise components in the t-f domain where the 
JSR = 5 dB. Note that the phase of the even and odd samples are 
not matched either absolutely to the original jammer or relatively 
to themselves. After the phase matching operation defined by 
(16) and (17) is performed on the synthesized jammer estimate, 
the signal in Fig. (4-c) is produced. Projecting the phase matched 
synthesized    jammer    on    the    constant    modulus    circle 

to («D 
Fig. 4 Jammer estimates for a complex chirp (a) Original 
Jammer (b) Masked and synthesized jammer estimate (c) 
Phase matching introduced (d) Projection Introduced 

produces the final jammer estimate, as shown in Fig (4-d). It is 
clear that through the phase matching and constant modulus pro- 
jection, both the phase and modulus of the jammer estimate are 
significantly improved. 

There are several factors that may inhibit the effectiveness 
of projecting the jammer estimate onto a constant modulus circle 
in order to produce an improved estimation. If the value A of the 
modulus chosen is inaccurate, the projection operation may actu- 
ally induce extra noise into the estimate of the interference. Also, 
even with the exact knowledge of J4, if the phase of the estimate is 
inaccurate, projection may prove ineffective. 

V. SIMULATION RESULTS 

We now present computer simulations for the cases con- 
sidered in the preceeding sections. The L=23 chips/bit are taken 
at a sampling frequency of 1 sample/bit for all simulations. In 
each case, the interference terms are either linear or sinusoidal 
FM. The linear FM interference is a chirp that sweeps the entire 
frequency band every bit period. The sinusoidal FM jammer is an 
FM signal whose instantaneous frequency (IF) is cos(.04 n). In 
this case, the jammer signal is offset to reach its highest IF in the 
middle of the bit duration. By so doing, we account for most of 
the self interference terms in the simulations. A zero-mean, white 
Gaussian noise is added in all cases at an SNR = 0 dB. 

Figure 5 gives a benchmark for the rest of the simulations 
by plotting the bit error rates (BERs) against different JSRs for the 
case when the preprocessing implementing the t-f interference 
synthesis is disabled, allowing interference mitigation to be only 
performed using spreading/despreading operations. Also 
included in the same figure is the case where the jammer is 
masked and synthesized with phase-matching, then subtracted 
from the received signal without the benefit of projection. Note 
that enabling preprocessing without performing the projection 
actually increases the overall noise at the receiver, and perfor- 
mance is hindered from the unprocessed case. 

Figure 6 shows the improvement in system performance 
when the masked-synthesized jammer estimate is projected onto a 
circle of constant modulus before it is subtracted from the 
received signal. Figure (6-a) illustrates the result of projecting the 
jammer estimate both before and after the phase matching is per- 
formed for the case of chirped interference. A sinusiodal FM 
jammer is considered in Fig. (6-b). In each case, a comparison 
with Fig. 5 makes it clear that as the interference increases in 
power, the estimate of the interference becomes more accurate, 
and lower bit error rates are produced. For these plots, the esti- 
mated modulus value used by the projection operator was taken 
from the received signal. At low JSRs, enabling preprocessing 
hinders the DS/SS system since the jammer estimate is highly 
contaminated by the signal and noise. Subtracting this poor jam- 
mer estimate actually serves to increase the noise in the signal. It 
is apparent that the interference mitigation using t-f synthesis 
techniques prior to correlation with the receiver PN sequence 
starts to produce improved results over the preprocessing disabled 
case around a JSR of 15 dB, depending on the t-f representation of 
the interference. 

Also included in Figure 6 is the ideal case when the exact 
amplitude of the jammer is known and can be used to define the 
constant modulus circle used in the projection operation. This 
produces a further reduction inBER, as the projection always pro- 
duces an improved estimation of the interference, and additional 
noise from the inaccuracy of estimating the amplitude of the pro- 
jected signal is no longer produced. 

Simulations were also run to show the effect of synthesiz- 
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ing the jammer without applying any masking in the t-f domain. 
Phase matching before and after projection was considered for 
both the chirp and sinusoidal FM jammers. Note that performing 
a phase matching prior to projection is equivalent to projecting the 
received signal in the time-domain and ignoring the t-f domain 
altogether. This technique also produces better results with 
increased jammer power, and it outperforms the original DS/SS 
case for JSRs above 20 dB, depending on the nature of the inter- 
ference. However, this technique is inferior to the one considered 
in the previous figure. 

VL CONCLUSIONS 

In this paper, mitigation of narrowband nonstationary 
interference in DS/SS communication systems is achieved by sub- 
tracting an estimate of the interference from the received signal. 
This estimate is obtained by masking out the signal and noise 
components of the received signal's rime-frequency distribution, 
and synthesizing the result When the interference is known apri- 
ori to be a polynomial phase which is uniquely described by its 
instantaneous frequency characteristics, an improved estimate can 
be generated by projecting the synthesized jammer estimate onto 
a circle of its constant modulus. The direct synthesis of the 
received signal from the t-f domain is also shown to be undesir- 
able primarily due to the inclusion of the jammer sidelobes and 
the loss of a meaningful phase reference. 

Simulations were performed for two jammer types utiliz- 
ing several processing techniques. It was shown that the lowest 
BERs were obtained when the jammer estimate was the result of 
both a phase matching and a projection operation. The order of 
these two operations that produce the best system performance, 
however, depend on the JSR and the time-frequency characteris- 
tics of the jammer signal. 
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ABSTRACT 

A new method is introduced for interference excision in spread 
spectrum communications. Time-frequency synthesis techniques 
are used to synthesize the nonstationary jammer from the time- 
frequency domain using least-squares methods. Subtraction of the 
synthesized jammer from the incoming data in the time domain 
leads to increased signal to interference and noise ratio at the input 
of the correlator, and hence improved bit error performance. The 
paper focuses on multi-component jammers, with each component 
of the jammer being of constant modulus. With this apriori 
knowledge, an amplitude projection operation which restores jam- 
mer amplitude information becomes feasible. Phase matching of 
the interference is provided by a least squares operation relative to 
the received signal. 

I. INTRODUCTION 

One of the fundamental applications of direct sequence 
(DS) spread spectrum (SS) communications is that of interference 
mitigation. Frequently, signal processing techniques are used in 
conjunction with the DS/SS receiver to augment the processing 
gain, permitting greater interference protection without an 
increase in bandwidth [6]. The recent development of bilinear 
time-frequency distributions (TFDs) for improved signal power 
localization in the time-frequency plane has motivated several new 
approaches for nonstationary interference excision in DS/SS sys- 
tems. Utilization of the jammer IF as obtained via TFDs to design 
an open loop adaptive filter in the time domain.has been thor- 
oughly discussed in [1,7]. However, this technique has two major 
drawbacks. First, it becomes unfeasible to remove more than one 
jammer component at any time instant. Second, this method cre- 
ates a significant amount of self noise (induced correlation) that in 
many cases actually hinders the performance of the spread spec- 
trum system. 

An alternate approach to broadband interference excision 
in DS/SS systems has been presented in [4]. This technique uses 
the TFD to depict a locally narrowband (FM, hopped, chirp, etc.) 
jammer over time and frequency. Time-varying filtering is then 
achieved by masking the regions of high power concentration in 
the t-f domain, followed by a synthesis technique to recover the 
jamming signal. This constructed jammer is then subtracted from 
the incoming data to remove the interference component in the 
time domain. 

This paper clarifies and expands on the methods presented 
in [4]. Of particular interest in this papeT are jammers composed 
of one or more components, each of which is of constant modulus. 
In this case, the jamming signal can be estimated more accurately 
through a two stage process. First, a non phase-matched estimate 
of each jammer component is generated by masking out the signal 
and noise components of the received signal in the t-f domain and 

then performing a least-squares synthesis procedure. This esti- 
mate is then improved by projecting each sample of each synthe- 
sized component on a circle representing the constant modulus of 
the actual jammer term. Performing a least squares phase match- 
ing operation then obtains a final estimate of the jammer, which 
when subtracted from the received signal achieves a drastic 
enhancement in the DS/SS system performance. 

II. TIME-FREQUENCY SYNTHESIS 

To explain the Wigner-Ville synthesis algorithm for multi- 
component signals, the following review of the methods presented 
in [3] is included. ,,•_... 

The Wigner-Ville Distribution (WVD) WJn,(0) of the dis- 
crete-time signal x(n) is defined by [5] as 

W,{n, a) = 2 X x(n + *)**(" - fc)«">*<D (1) 
* = — 

The synthesis problem is finding the sequence x(n) whose WVD is 
closest in some sense to a desired real time-frequency distribution 
Y(n,<o) that may or may not represent a valid Wigner-Ville distri- 
bution. „    . 

If Y(n.(i>) is indeed a valid Wigner-Ville distribution, a 
direct calculation of the corresponding time-domain sequence x(n) 
can be accomplished according to [5] 

,(„ + *)**(*-*) = ±  j   H\(n,»)*'2*"«to (2) 
-it/2 

If however, Y(n,a>) is not itself a valid WVD, we then wish 
to find a sequence x(n) whose WVD best approximates Y(n,<ü). 
This problem is formulated and solved in a least-squares sense by 
minimizing 

*/2 

£W = Xj j  \Y(n,iO)-Wx{n,iü)\2 (3) 
"       -K/2 

It was shown in [4] that the even and odd indexed samples of the 
sequence x(n) could be generated independently by solving the 
equations 

Cexe = A\xe\ xe (4) 

This work supported by Rome Lab, contract #F30602-96-0077 

and 

CoX0 = 4|*0| x0 (5) 

where xc and x0 are the eigenvectors corresponding to the largest 
eigenvalues of Ce and C0 in each equation. Ce and C„ ate 

obtained from Y(n,u>) according to 
Ce{p+l,m+l) = y(m + p,p-m) + y*(m + p,m-p)    (6) 

and 
C0(p,m) = y(m + />-l,/>-m) + y*(m + p-l,m-/>)    (7) 
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where 
K/2 

y{n,m)=l- J nn,a)e" 1  . da (8) 
-%/2 

The desired sequence x(n) can then be recovered from 
xe{n) = x(2n) (9) 

and 
x0(n) = x(2n+l) (10) 

Although this technique produces a sequence that mini- 
mizes the error in (3), the above solution is not unique. Since a 
multiplication of the even and odd components of x(n) by the 
phase constants at and ac does not change the sequence's WVD, 
signal synthesis can only be achieved up to an arbitrary phase in 
both the even and odd components of the sequence. However, 
with the presence of a reference signal which is often chosen as 
the original data sequence, it is possible to find the parameters at 

and a0 that bring the synthesized signal as close as possible to the 
reference signal by phase matching. That has conventionally been 
achieved according to 

ae = arg[]£j(2n)jce*(n)] (11) 

and 

a„ = argr£*(2n + l)j:0*(n)J (12) 

where s(n) is the reference signal. 
However, when the reference signal is composed of the 

sum of several individual components, and a phase matching of 
several signals to corresponding components is desired, a least 
squares solution must be utilized. If the even and odd components 
of the reference signal in this case are denoted by the vectors se 

and s0 respectively, and xe and x0 denote matrices with each col- 
umn being a non phase-matched signal component, a vector con- 
taining the desired phase constants of each even and odd 
component may be obtained according to 

at = arg[x* st) (13) 

and 

"» = arg[J0 *„] (14) 

where z* denotes the pseudo-inverse of z. 

ni. SELECTION OF THE SYNTHESIZED SIGNAL 

It was shown in [4] that two possible approaches can be 
adapted in the application of t-f distribution synthesis techniques 
in interference mitigation in spread spectrum communications. 
The first approach is to synthesize the spread spectrum signal and 
correlate it with the PN sequence at the receiver, as shown in Fig 1 
(a). In the second approach, each jammer component is synthe- 
sized from the t-f domain and then subtracted from the incoming 
data to remove, or at least reduce, the jammer contamination of 
the desired signal, as depicted in Eg 1 (b). 

The preference of using one approach over the other 
depends on the ability to obtain a synthesized signal which is a 
good copy of its correspondence in the input data. This requires 
the signal to be synthesized to have a clear t-f signature that dis- 
tinguishes it from other components of the received data. Also, 
phase matching and restoration of the synthesized signal should 
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Fig. 1 Two approaches for interference mitigation in DS/SS 
communication systems (a) synthesizing the desired signal (b) 
synthesizing the interference 
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Fig. 2 (a) WVD of the DS/SS signal, L=128 (b) WVD of 
the chirp interference 

be properly accomplished. 
Figure 2 shows an example of the Wigner-Ville distribu- 

tions computed separately of a complex DS/SS signal and a linear 
FM interference. It is straightforward to conclude that synthesiz- 
ing the spread spectrum signal from the t-f domain should gener- 
ally be avoided due to the following reasons: 

1) It is very difficult to distinguish between the noise and 
the spread spectrum signal signatures in the time-frequency 
domain. Therefore, time-varying filtering does not reduce the 
effect of noise or enhance the SNR. 

2) Masking out the jammer by clipping or gating the high 
power values in the t-f domain may very well remove the main 
lobe, but it leaves behind the sidelobes which carry significant 
jammer power. 

3) The crossterms between the jammer and both the DS/ 
SS signal and noise as well as the jammer self crossterms are 
often spread over the entire t-f domain, contaminating the spread 
spectrum signal within large regions of time and frequency. 

4) Phase matching is often performed using the input data 
as a reference signal. Therefore, even with the assumption that 
the DS/SS signal is perfectly synthesized up to a phase ambiguity, 
the low desired signal power will make it very difficult to arrive at 
the correct phase by a simple matching to a data sequence in 
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which the jammer is the dominant component. 
Proper phase matching can therefore be obtained using the 

input data as a reference signal only through the second approach, 
provided that the JSR is relatively high, which is usually the case. 
It is expected, however, that the effectiveness of phase matching 
reduces with reduced jammer power. 

IV. CONSTANT MODULUS PROJECTION 

Let PA define the constant modulus projection operator 
which when applied to the complex sequence x(n), the resulting 
signal, xA(n), retains the phase of each sample of x(n), but changes 
its amplitude to a constant value A. This is equivalent to project- 
ing each sample of x(n) on the complex plane onto the closest 
point of a circle of radius A that is centered at the origin, as 
depicted in Fig 3. Significant reduction of noise may be achieved 
through this operation when it is a applied to a signal component 
that is known to be of modulus A, and whose phase can be recov- 
ered. 

lmag 

Real 

Fig. 3 Constant modulus projection operator (PA) on the data 
sequence x(n) 

In the excision of interference in DS/SS systems, it desir- 
able to subtract an accurate estimate of this interference from the 
received signal prior to correlation with the PN sequence in order 
to enhance system performance. As stated in the previous section, 
a good estimate for this interference may come from synthesizing 
a masked t-f representation of the received signal. Figure 4 (a) 
depicts the original time-domain chirp jammer signal, and Fig 4 
(b) is the synthesized interference estimate obtained from mask- 
ing out the signal and noise components in the t-f domain where 
the JSR = 5 dB. Note that the phase of the even and odd samples 
are not matched either absolutely to the original jammer or rela- 
tively to themselves. After the projection operation is performed 
on the synthesized jammer estimate, the signal in Fig 4 (c) is pro- 
duced. Phase matching the projected synthesized jammer pro- 
duces the final jammer estimate, as shown in Fig 4 (d). It is clear 
that through the phase matching and constant modulus projection, 
both the phase and modulus of the jammer estimate are signifi- 
cantly improved. 

There are several factors that may inhibit the effectiveness 
of projecting the jammer estimate onto a constant modulus circle 
in order to produce an improved estimation. If the value A of the 
modulus chosen is inaccurate, the projection operation may actu- 
ally induce extra noise into the estimate of the interference. Also, 
even with the exact knowledge of A, if the phase of the estimate is 
inaccurate, projection may prove ineffective. 
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Fig. 4 Refjammer estimates) for a complex chirp (a) Original 
Jammer (b) Masked and synthesized jammer estimate (c) Pro- 
jection Introduced (d) Phase Matching Introduced 

V. MULTI-COMPONENT JAMMERS 

When the jammer is composed of more than one compo- 
nent, the technique presented in this paper may still prove effec- 
tive, provided that each interference term is distinguishable in the 
t-f domain. In this situation, each jammer component is individu- 
ally synthesized from the t-f domain and subtracted from the 
received signal. 

Fig. S (a) WVD of interference composed of two terms. Note 
the jammer crossterms.   (b)   Only one jammer component 
retained 

The Wjgner-Ville distribution of a jammer composed of 
two widely spaced linear FM signals is shown in Fig 5 (a). Mask- 
ing so as to retain only one of these components produces the dis- 
tribution in Fig 5 (b). Synthesizing this masked distribution and 
performing the projection provides a good estimate for this term. 
Next, the second jammer component is retained through masking, 
and is synthesized and projected in the same manner. Phase 
matching is now performed according to (13) and (14), and esti- 
mates for each of the jammer components are obtained. Each of 
these jammer is now subtracted from the incoming data to provide 
an effectively jammer-free received signal. 

When masking out all but one of the interference terms, 
care should be taken so as to ensure that none of the jammer 
crossterms are included in the synthesis procedure. Inclusion of 
even a small fraction of these crossterms may induce other inter- 
ference terms into the desired jammer estimate, thus contaminat- 
ing the overall jammer estimate and hindering system 
performance. 
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VI. SIMULATION RESULTS 

We now present the results of computer simulations for 
the methods introduced in this paper. The L=23 chips/bit are 
taken at a sampling frequency of 1 sample/bit for all simulations. 
In each case, the jammer is a linear FM interference that sweeps 
the entire frequency band every bit period, and zero-mean, white 
Gaussian noise is added at an SNR = 0 dB. 

Figure 6 gives a benchmark for the rest of the simulations 
by plotting the bit error rates (BERs) against different JSRs for the 
case when the preprocessing implementing the t-f interference 
synthesis is disabled, allowing interference mitigation to be only 
performed using spreading/despreading operations. Also included 
in the same figure is the case where the jammer is masked and 
synthesized with phase-matching, then subtracted from the 
received signal without the benefit of projection. Note that 
enabling preprocessing without performing the projection actually 
increases the overall noise at the receiver at high JSRs, and perfor- 
mance is slightly hindered from the unprocessed case. 

Table 1 shows the improvement in system performance 
when the masked-synthesized jammer estimate is projected onto a 
circle of constant modulus before it is subtracted from the 
received signal. This table illustrates the result of projecting the 
jammer estimate both before and after the phase matching is per- 
formed for the case of a single chirped interference. For each col- 
umn, 800,000 trials were used. It is clear that as the interference 
increases in power, the estimate of the interference becomes more 
accurate, and lower bit error rates are produced. For these simula- 
tions, the estimated modulus value used by the projection operator 
was taken by averaging the modulus of the received signal over 
each time sample. At low JSRs, enabling preprocessing hinders 
the DS/SS system since the jammer estimate is highly contami- 
nated by the signal and noise. Subtracting this poor jammer esti- 
mate actually serves to increase the noise in the signal. It is 
apparent that the interference mitigation using t-f synthesis tech- 
niques prior to correlation with the receiver PN sequence starts to 
produce improved results over the preprocessing disabled case 
around a JSR of 9 dB, depending on the nature of the interference. 

Also included in Table 1 is the ideal case when the exact 
amplitude of the jammer is known and can be used to define the 
constant modulus circle used in the projection operation. This 
produces a further reduction in BER, as the projection always pro- 
duces an improved estimation of the interference, and additional 
noise from the inaccuracy of estimating the amplitude of the pro- 
jected signal is no longer produced. 

It should be noted that simulations were also run using 63 
chips/bit. However, with this much processing gain, no errors 
were produced in 100,000 trials at any of the given JSR values 

D B preprocessing disabled 
* = preprocessing wiihoul constiM 

modulus projecliott 

when preprocessing was enabled. Simulation results for the 
multi-component case are given in [2] 

vn. CONCLUSIONS 

In this paper, mitigation of multi-component nonstationary 
interference in DS/SS communication systems is achieved by sub- 
tracting an estimate of the interference from the received signal. 
This estimate is obtained by masking out the SS signal and noise 
components of the received signal's time-frequency distribution, 
and synthesizing the result When the interference is known apri- 
ori to be the sum of polynomial phase signals which are uniquely 
described by their instantaneous frequencies, an improved esti- 
mate can be generated by projecting the synthesized jammer com- 
ponent estimates onto circles of their constant modulus values. 

Simulations were performed for a linear FM jammer uti- 
lizing several processing techniques. It was shown that the lowest 
BERs were obtained when the jammer estimate was the result of 
both a projection and a phase matching operation. 
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Fig. 6 BER vs. JSR for the preprocessing disabled and for the 
preprocessing enabled without projection cases 

JSR 
Project 

Before Phase 
Match 

Project After 
Phase Match 

Project 
Before onto 
Exact Mod 

0 1 143 1 
3 48 1730 40 
6 3746 14622 1560 
9 314 585 182 
12 0 0 0 
15 0 0 0 
18 8 8 4 
21 4 4 1 
24 3 3 0 
27 1 1 0 
30 6 6 4 
33 4 4 2 
36 9 9 3 
39 7 7 3 
42 6 6 2 
45 5 '    5 0 
48 7 7 2 

Table 1 Number of bit errors out of 800,000 trials 
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ABSTRACT 

A new adaptive excision approach for nonstationary interference excision in direct 

sequence spread spectrum(DS/SS) communications is introduced. The proposed excision 

approach is based on the attractive localization properties of the impulse responses of the multiple 

pole filters. These impulse responses have Gaussian-like shapes and decrease in bandwidth with 

higher pole multiplicities. When used as data windows, they yield a large class of computationally 

efficient short-time Fourier transforms(STFTs). Localization measures can be applied for deter- 

mining the optimum window which maximally concentrates the interference in the time-fre- 

quency domain. Interference mitigation is then achieved by applying a binary excision mask to 

the corresponding STFT for each data bit. We show that the proposed interference excision 

method permits both data-dependent windowing and time-varying filtering, and leads to improved 

BER performance of the DS/SS system. 

»This work is supported by US Air Force, Rome Lab, contract No. F30602-96-C-0077 
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I. INTRODUCTION 

Interference excision in spread spectrum communication is an important problem in both mil- 

itary and civilian applications. There are several techniques which have been proposed for this 

task. These techniques include adaptive notch filtering, decision feedback[l] and transform 

domain methods[2]. For jammer signals with broadband frequency characteristics, but yet possess 

narrowband instantaneous bandwidths, time-frequency methods have been shown to be very 

effective in improving the receiver performance and reducing the bit error rates. One class of these 

methods implements linear excisions in which the data is processed using the wavelet transform 

or M-band/subband filter banks [3,4]. Another class applies bilinear transformations using time- 

frequency distributions for instantaneous frequency estimation, followed by time-domain excision 

filtering [5,6]. 

The short-time Fourier transform (STFT) is a linear time-frequency signal representation 

which inherently suffers from the trade-off between temporal and spectral resolution [7]. The 

STFT employing a short data window provides a good temporal resolution, whereas that using a 

window of long time extent has fine spectral resolution. One solution of this incompatibility prob- 

lem is to generate a large class of STFTs which employ different windows with distinct character- 

istics. Some members of this class should be appropriate to describe slowly time-varying signals, 

while others must be set to provide better localization in rapidly time-varying environments. For a 

given nonstationary signal, the STFT within this class that yields the best temporal/spectral trade- 

off, or the highest possible concentration in time-frequency domain, should be chosen for t-f sig- 

nal representations. Several concentration measures including those introduced in [7, 8] can be 

used for this purpose. 

The application of STFT for interference excision in DS/SS communications using sparse grid 
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and overdetermined time-frequency tilings is discussed in [9] and [10], respectively. In this paper, 

we extend the application of the STFT to nonstationary interference mitigation in DS/SS commu- 

nications. The generation of a class of different short-time Fourier transforms by using a multiple 

pole infinite impulse response filter, realized in cascading form is considered. Members of this 

class have sufficient diversity in their temporal/spectral trade-off and are easily updated in time. 

Further, the STFT using an impulse response of one filter can be recursively generated from those 

members corresponding to smaller filter orders or pole multiplicities. The choice of the optimum 

window (impulse response) can be made using localization test criteria such as those discussed in 

[7,8]. Interference excision is then performed by either clipping or gating the high power values of 

the optimum window STFT. The process is repeated for each bit or block of data and the choice of 

the window could therefore vary with time. 

We present the analysis of the receiver signal-to-noise ratio, SNR0, using binary excisions on 

STFTs. It is shown that different data windows applied to the same jammer waveform will result 

in a different value of SNRa. The proper data windows, selected by concentration measures, max- 

imize the jammer localization and thus limit the interference spread in the t-f domain. By confin- 

ing the jammer to small number of t-f bins, binary excisions can effectively remove the jammer 

energy, causing a minimum distortion to the spread spectrum signal and, in turn, improving 

receiver SNR. We stress the fact that not only the jammer power affects the receiver SNR, but also 

its t-f signature. The best and the worst jammer power distributions in the t-f domain in view of 

STFT-based interference excision are delineated. 

Section II presents the STFT analysis and synthesis method. Multiple pole windows and their 

temporal/spectral localization properties are discussed in Section III. Section IV summarizes two 

concentration measures for the optimum data window selection. The overall scheme for the pro- 
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posed adaptive STFT method for jammer excisions is given in Section V. Receiver SNR analysis 

for the DS/SS communication system implementing the STFT as jammer excision method is 

given in Section VI. Performance dependency on the jammer's t-f signature is analyzed in Section 

VII. Computer simulations showing the BER for both adaptive and fixed window STFT-based 

interference excisions in DS/SS communication are presented in Section VIII. 

n. SHORT-TIME FOURIER TRANSFORM 

Short-time Fourier transform can be presented using two perspectives, namely the filter bank 

and Fourier transform[l 1]. Form the Fourier transform perspective, the STFT X(njc) of the signal 

x(n) is given by 

X(n,k) = ^w(n - m)x(m)e~}2nmk/N 0) 
m 

where k is the frequency sample number, N is the number of total frequency samples, and w is the 

moving data window. The synthesis method corresponding to the Fourier transform perspective is 

the Overlap-Add(OLA)[12] method which can be expressed as 

?(") = IX^(^)^" = 5>«.<"> = 5>(nM«-») = Lxinj^wim-n)     (2) 
m k = 0 mm ™ 

where y (n) is the inverse discrete Fourier transform at the time sample m. It can be readily 

shown that if w(n) is sampled at sufficiently dense rate, then[12] 

2>(w-n) = W(ej°),   y(n) = Lx(n)W(ej°) (3) 
m 

It is clear from (3) that without altering the values of the STFT, the synthesized signal is the same 

as the original signal, 
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L-\ 

LW(ej0)     LW(eJ°)„j~0 

In many applications, however, it is desired to synthesize a signal from a time-frequency function 

formed by modifying the STFT. For example, the purpose of the STFT method in DS/SS jammer 

excision problem is to concentrate the jammer in a small area in t-f domain and remove its t-f sig- 

nature via a binary mask. The synthesis is then performed on the masked STFT to recover the 

jammer-free original signal. If the STFTX(n,k) is modified, then the synthesized signal becomes a 

time-varying convolution between data sequence x(n) and a function p(n,m), which is referred to 

as a time-varying filter. 

III. ORDER RECURSIVE SHORT TIME FOURIER TRANSFORM (ORFT) 

The order recursive short-time Fourier transform was introduced in [13] as an approach to 

generate a large class of STFTs whose members are generated from one another through simple 

recursions. The recursions are made possible by setting the analysis window hk(n) equal to the 

impulse response of a multiple pole linear time-invariant filter. The transfer function of hk(n) can 

be expressed in the Z-domain as 

(1-Yz   ) 

where y is the filter pole and the superscript k denotes the pole multiplicity. The corresponding 

impulse response is given by 

,  ,  .       ,.       .k(n + k-l)l n ,-. 
M") = (l-T)   „.(fc-DJ? <6> 

It can be readily shown that the above sequence possesses the recursive property[13] 
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Using the impulse response (7) as the analysis window in STFT yields a similar recursion 

Fj +,(/!,©) = yFk + J(n-\,(i>) + (l-y)Fk(n,<i>) (8) 

where Fk(«, CD) denotes the STFT which corresponds to the filter order k, calculated at time n 

and frequency CO. Equation (8) defines the order recursive Fourier transform(ORFT), in which the 

FT is recursive in both time n and filter order k. The block diagram of ORFT consisting of sys- 

tems connected in cascade is depicted in Fig.l. The STFTs Fk(n, co), k=l,2,...,K offer different 

trade-off between temporal and spectral resolutions. The trade-off is decided by the two variables 

in the problem, the filter pole and its multiplicity. Fig.2(a) shows the windows corresponding to 

k=l,2,—9 with y = 0.7, whereas Fig.2(b) shows the data window for a single pole filter with y 

changing over the range [0.5, 0.9]. Fig.3 shows the time and frequency characteristics of the win- 

dow corresponding to different filter orders for y = 0.9. It is evident that higher filter order and 

pole values lead to longer extent data windows, and subsequently, finer spectral resolution. The 

fast computational property of the members of the above recursive class of STFTs as well as the 

significant variation of temporal/spectral resolutions as a function of the analysis window parame- 

ters makes multiple pole window STFTs as an attractive tool for nonstationary interference exci- 

sion, as shown below. 

TV. CONCENTRATION MEASURE 

The main objective of adaptive STFT is to decide, without human intervention or extensive 

prior knowledge of the underlying signal characteristics, on the analysis window which offers the 

best time-frequency resolution! 14]. Procedures based on mathematical optimal criteria appears 
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most promising. Renyi information of the third order has been shown to provide a valuable and 

effective information measure in the context of time-frequency distributions^], 

0), =-iX5>g||SrFr(n,CD)||3 (9) 
n   (0 

It is recognized that the maximum value of v2 in (9) is the one corresponding to the highest t-f 

concentration of the underlying t-f signal. Using the recursive class of STFTs presented in the pre- 

vious section, we first proceed to calculate vl for all members Fk(n, CD). The maximum concen- 

tration measure is then determined, and the respective STFT is chosen as the most appropriate t-f 

signal representation. 

Another effective local concentration measure was introduced in [7] as: 

22,\STFT{n, co)|4 

■On "  <*  (10) 

(X£|OTT(n,co)|2J 
n    (0 

The basis for choosing the optimum window rests on the intuition that high value of v2 reflects 

good time-frequency localization and high resolution. The ratio of the L4 norm to the L2 norm of 

the STFT favors "peaky" distributions that place much of the signal energy into small region of 

the time-frequency plane, thus achieving a concentrated representation. 

Figure.4(a,b,c,d) depicts the STFTs of a chirp jammer signal using three rectangular data win- 

dows. The jammer-to-DS/SS signal ratio(JSR) is 20dB, where SNR is set to OdB. The PN 

sequence length is set to L=128. The values of the two concentration measures as functions of the 

window length are shown in Fig.4(e). In both cases, the maximum value is reached when the win- 

dow length is 30 data samples. Indeed, by comparing Fig.4(b,c,d), it is clear that the STFT with 

window length of 30 samples is more concentrated than the other two based on the window 

190 



lengths of 10 and 110 samples. Next, we consider the two cases of sinusoidal and impulse jam- 

mers. For both cases, STFTs using rectangular, Hamming, and Hanning windows are computed. 

For each type of window, the two aforementioned concentration measures are evaluated for differ- 

ent window length. The results for the sinusoidal jammer are shown in Fig.5(a,c), whereas those 

for impulse jammer are depicted in Fig.5(b,d). For the sinusoid jammer, both measures under all 

three windows point to the maximum window length as the one leading to the highest t-f concen- 

tration. The opposite is true for the impulse jammer. It is clear that both concentration measures 

(9) and (10) give results consistent with Fourier analysis of windowed signals. 

V. ADAPTIVE STFT IN DS/SS SYSTEMS 

Fig.6 shows the flow chart describing the steps in implementing the proposed recursive 

STFT-based interference excision method in PN spread spectrum communications. These steps 

can be lumped into five consecutive stages: selecting of the analysis window parameters; comput- 

ing STFTs; selecting the optimum STFT using concentration measures; masking the selected 

STFT; synthesizing the jammer-free signal; forming the decision variable and detecting the trans- 

mitted bit. In this section we expand an important issue relating to window selection and decision 

variable. 

Generating a class of infinite numbers of STFTs is neither feasible or necessary. In the fol- 

lowing, we provide a mechanism to set the window parameters y, K to take a finite number of val- 

ues consistent with the PN length as well as the required temporal and spectral resolutions. 

According to [13], the effective window length is defined as 

U = 1/ I Kinf 
\n = 0 

1, = !^ (ii) 1      1 -y 
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which increases with increased values of k and y. Since the minimum value of Lk(y) = Lmin is 

obtained at k-1, for a given y, then the highest temporal resolution is achieved when using a sin- 

gle pole filter. By setting Lj = Lmin, the value of y can be determined from (11). The maximum 

effective window length Lk(y) = Lmax is reached at the maximum multiplicity k=K. A reason- 

able value of Lmax is the PN sequence length L. In the absence of the closed form expressions for 

hk(y), k>l, given L and y, the maximum order K can be numerically determined by computing 

(11). The relation between y and K for L=1024 is shown in Fig.7. It is evident from this figure 

that as y increases, fewer analysis windows can be generated in between Lj and Lk, which, in 

turn, narrows down the possible and available choices of the STFTs. 

For the detection of the information symbol, the decision variable g can be formed from the 

correlation 

N-l 

g =   £ x{n)p*(n) (12) 
n = 0 

where, p(n) represents the receiver PN sequence, N is the number of chips per information bit 

(we assume one sample/chip), and x(n) is the synthesized signal. From Section II, if there is no 

modification made in the t-f domain, then the synthesized signal is equal to the original signal 

x(n) = 5c(n). By substituting equation (4) in (12), we obtain 

where P(e ) is the discrete Fourier transform of the PN sequence. Since all the functions in 

(13) are in the transform domain, then the detection can be performed without the need to apply 
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inverse transformations. If the excision function Am(k) is applied to the STFT, then the synthe- 

sized signal is modified to 

"» * = 0 

In this case, 

g = —^5-1 P*(eJ(*)ZAm(k)XJei(*>) (15) 

The scheme to perform the correlation in the time domain and the transform domain, respectively 

given by (12) and (15), is depicted in Fig.8(a),(b). The STFT domain detection scheme allows 

computational saving in two ways. First, the time domain correlation requires m inverse DFT to 

be performed, whereas only one DFT operation is required for the PN sequence in (15). Second, if 

the PN sequence is repetitive, its DFT remains fixed for every bit, which in tum reduces on-line 

computations in the correlation scheme of Fig.8(b). 

VI. RECEIVER SNR 

If bit "1" is transmitted, then the baseband received signal can be expressed as 

r(i) = p(i) + j(i) + n(i) (16) 

where {p(i)} represents the PN sequence, which is known to both the transmitter and the receiver, 

{j(i)} is the jammer sequence, which is of zero-mean and covariance [Rj(i)}, and {n(i)} is an 

additive white Gaussian noise sequence with zero mean and variance an . It is assumed that the 

above three sequences are uncorrelated. The decision variable at the output of the correlator is 

*In this section, we use r in place of x to represent the received signal. 
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given by 

g = X r('')p(0 (17) 

i = 0 

If jammer excision is performed prior to despreading, then the received signal is modified to r\i), 

and the corresponding decision variable becomes 

L-l 

8' =  £ r'OXO (18) 
i = o 

The receiver SNR is often used as a performance measure. It is defined in [15] as 

2 

SNRo = -£J£1 (19) 
var[g] 

The primary objective of all interference excision techniques in spread spectrum communication 

is to maximize SNRo for a large class of interfering signals. The STFT-based interference excision 

system is most effective in mitigating jammers which can be highly localized in the t-f domain. 

The signal synthesis from the STFT can be simply performed using the overlap-add(OLA) 

method described in Section II. If the binary excision function Am{k) is applied to the STFT at 

time m and frequency k, then the synthesized signal is modified to 

L-\ 
T{n)  =  T^TWX X AmWRmi'      )' LW(eJ ) m * = o 

s^III^)r(Wi)eM(""° (20) 

where R and W are the DFTs of the received signal and the data window, wm(l), respectively. 

From (19) and (20), the decision variable can be expressed by the sum of three different terms cor- 

responding to the three components of the input data, 
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1 is-2 IX I V*W)*M<"" V)/><"> 
£W(e7  )n = Om* = 0/ = 0 

+-^XXZS^(*)^(')*M(""0»(OP(») 

= ^,+^2 + ^3 <21> 

Since the three components of r are independent, then 

E(g') = E(g\) + E(g'2) + E(g'3) var(g') = var(g\) + var(g'2) + var{g3)        (22) 

The mean values in (22) are derived in Appendix A and are given by 

EW = -^-W 2 Z I AJk)WJn) E{g\) = E(g'3) = 0 (23) 
LW(eJ )n = 0mk = 0 

whereas the variances in (22), as shown in Appendix A, are given by 

var(g\) = 0 (24) 

var(g-2) = -4^rX 2  2X 2 ^(^^(^J/)^//,)^/,/,)^''"" .   (25) 

Using equations (22-26), the receiver SAtfto is given by 

2 

5M* = EW (27) 
var(g2) + var(g3) 

If there is no jammer excision, then AJk)=l and the above expression simplifies to the well 

195 



known formula[16] 

SNRwo = 
(L2W(eJ0))2/L (28) 

L2Rj(0) W2{ej0) + LV„ W2(ej0)     Rfl) + o£ 

In order to gain insights into the SNR0 in (27), we examine, in the following, the two specific 

cases of impulse and sinusoidal jammers. 

A. Impulse Jammer 

If the jammer is an impulse, i.e., j(i) = 8(i - i0), the SNRo takes the form 

(L-\      1-1 
(1/L) 

>? 

SEI 4,,(*K,(") 
S7W?   = 

M = 0ra * = 0 
L-l L-1L-1 

XX X ^(*)^/*)^(<o)"mi(<o)+<^X X X Zv*>*m1(*K,<'K,I<o 
wi m, * = 0 m t = 0/=Om, 

(29) 

All signals in the t-f region (m,k), m e g, where Q is a set of integer values chosen from [1,L], is 

removed by setting the binary coefficients Am(k)=0, me Q, whereas all signals in the comple- 

ment t-f region (m,k), m e Q is left intact by setting the binary coefficients Am(k)=l, me Q. 

These two conditions simplify equation (29) to the form below 

SNR„ = 

X w™(°> 
\ne Q    . 

{x w-.('o)T+<4( x w«(°)T+ x   xx ^o^c)} 
(30) 

Two important observations about SNRo in (30) are in order: l)the first summation term in the 

denominator is zero if i0 e Q, and the span of the data window is equal to or smaller than that of 
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the t-f strip meß- 2)the term with overlapping windows in the denominator takes a minimum 

value if w (i) = b{m - i), i.e., the window is a unit sample sequence. In this case, SNRo reaches 

its maximum value 

SNRo = ^p. (31) 
On 

In (31), the jammer is entirely removed with the cost of only decreasing the processing gain by 

one. For high spread spectrum processing gain, L»l, jammer removal causes insignificant 

change in SNR0. 

B. Sinusoidal Jammer 

.271.   . 
J—V 

If the jammer is a sinusoidal function, j(i) = Be , then the corresponding DFT is 

£5(fc - *0). In this case, it can be readily shown that the DS/SS receiver SNR implementing 

STFT is given by 

rL-\     L-\ Y 

SNR„ =  ^ = 0m*:0
n  (32) o 

where 

Di = *22 2 Iv^-w^-^V1"^ 
in * = Om, 

and 

D2 = *«2 2 2 2 V*>4».<*^«<'>w«.(,) 

m * = 0/=0m, 

If we only set the peak value of the STFT at the frequency k=k0 to zero, i.e., AJk0)=0 and 
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Am(k)=l, k*k0, then equation (32) simplifies to 

SNRo = (1/L)(L-1)
2
LV

2
(/)   (33) 

m k = 0,k*kQml 

It should be noted that by doing so, the jammer is not totally removed, as evident by the appear- 

ance of B2 in the denominator of equation (33). The entire removal of the jammer can, however, 

be achieved by setting Wm(k -k0) = 0,k*kQ, which amounts to using a rectangular data win- 

dow with the appropriate length. In this case, SNRo is maximized and given by 

SNRo = SklD (34) 
On 

On the other hand, if the jammer frequency does not coincide with any of the STFT frequency 

bins, then its power leaks over the entire t-f plane. Mitigating the interference in this case may be 

achieved by carefully selecting the region of highest jammer concentration and setting the corre- 

sponding coefficients AJk) to zero. If C denotes the jammer power remained after setting q t-f 

bins to zero, then the receiver SNRo becomes 

SNRo = ikzSl (35) 
C + Gn 

The trade-off between jammer removal and desired signal distortion is evident in equation (35). 

As the number of t-f binary coefficients assuming zero-value increases, i.e., q increases, the 

numerator is reduced, but also less jammer power is retained, i.e., C decreases. 

VII PERFORMANCE DEPENDENCY ON JAMMER SIGNITURE 

The main purpose of this section is to highlight the fact that the receiver performance not only 
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depends on the number of t-f bins contaminated by the jammer signature, but also on where these 

bins lie in the time-frequency domain. Suppose the jammer occupies L t-f bins, which are to be 

removed by proper masking. The following analysis shows that the positions of these L bins sig- 

nificantly influence the SNR performance. 

Under the assumption that the jammer is entirely removed by setting the corresponding M t-f 

binary coefficients to zeros, equation (27) simplifies to 

SNRo = 

X X X4»<*)w» 
J) 

L-1L-1 
L°«X   X    X4»<*)W«</>|X4.,<*K.I<

/> 

(36) 

The numerator of SNRQ can be expressed in matrix form as 

Numerator = W (0) [i.... i] 

i4,(0) A2(0)    . •     AM(0) 

4,(1) 
i 

i 

A2{\)    . 
i 

i 

■     AM{\) 
i 

i 

A)(L-l)A2{L-\) ... AM(L-1) 

W2(0)(c'Ac)2 

(37) 

where c is a vector whose elements are all ones. The denominator in (36) can be expressed as 

Denominator = L8ntrace[BRw] 

where B is the product of the binary excision coefficient matrix 

B = 

A}(0) 4,(1) .. 

A2(0) A2(l) .. 

■ A^L-1) 

. A2{L-\) 

,4,(0)       A2{0)    . 

A^l)       A2{\)    . 

■ AM(0) 

■ AM{\) = ATA    (38) 

AJ{0)A„(1).. ■AM(L-1) 4,(1-1) ;42(L-1) . ■AM(L-1)_ 
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Similarly, Rw is the window correlation matrix, 

L-l L-2 

]Tw2(0        5>(Z)W(/+1) 
/=0 /=0 

L-2 

Xw(/)w(/+l) ^ 
/ = 0 

i v. 
Rw = 

w(0)w{L-l) 

\ 

\ 

\ 
\ 

w(0)w(L-l) 

L-2 

^^ 5>(/M/+l) 
; = o 

L-2 L-l 

2>(Z)w(Z+l)        ]>>2(Z) 
/=0 / = 0 

(39) 

Suppose the jammer is concentrated in M t-f bins. By setting the corresponding excision values to 

zero, then 

Numerator - 
L-l   M ^2 

W(0) x X  Z AJk) 
k = dm = 1 y 

= ((L-l)MW(0)r (40) 

L L-l L-l L-2 

Denominator =   £ £(/, i) £ W
2
(/) + 2£B(I,I + 1) ]£ w(/)w(/+ 1) + ... 

i"=l / = 0 i= 1 1=0 

+ 2B(l,L)w(0)w(L-l) (41) 

From (40) and (41), since the optimum window is assumed to have already been selected, the only 

parameters that can affect SNR are the elements of B matrix B(i,j), where 

B(i,j) = [4,(0)^.(1) ... ^.(L-l)] 

Aj(0) 

Aj(L-l)_ 

(42) 

With nonnegtive analysis window, the maximum values of the denominator is achieved by maxi- 

mizing     each      summation      coefficient     in     (41).     The      maximum      values      of 
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L-j+1 

Y   B(i, i + j),j = 0, 1, ...L- 1 are obtained when all the elements along one column of A 

i=l 

are zeros, i.e. 

A = 

Aj(0) 4,(1) ...0... Ax{L-\) 

A2(0) A2{\) ... 0 ... A2(L-\) 

AM{0)AM(l)...0...AM(L-\) 

which corresponds to a single tone jammer. In this case, equation (41) becomes 

L-\ L-2 

Denominator = M(L- 1) £ w2(/) + 2(M- 1)(L- 1) £ w(')w(/+ 1) + 
/ = o / = o 

+ 2(L-lM0)w(L-l) (43) 

An important conclusion that can be drawn from above analysis is that, for all jammers which 

occupy M t-f bins, a single tone interference results in the smallest SNR, i.e., the worst receiver 

performance. 

The above analysis cannot be applied to examine the interference signature leading to the 

best receiver performance. It should be noted that the solution space of A is discrete. Therefore, 

the best or worst performance cannot be achieved var constrained minimum mean square error 

optimization methods. In the underlying problem, exhaustive search of all possible combinations 

of "1" and "0" can be used to obtain the performance bounds. We have consistently found that, 

independent of the PN sequence length, the highest SNR0 is achieved when the interference has 

the orthogonal signature of that of the minimum SNRQ, i.e., the jammer puts all of its power into 

one time slice, which describes an impulse form of jamming. 

One interpretation of the above result lies in the fact that for STFT, due to the moving win- 
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dow, yields a redundancy in the information along the time axis, yet there is no redundancy along 

the frequency axis. If the data in one time slice is removed, the adjacent time slice will still 

include most of the data samples, depending on the overlapping pattern of the moving window. As 

long as the overlap is not sparse, the information lost is insignificant. The signal may, however, 

encounter some energy attenuation. This kind of binary excision will not substantially decrease 

the receiver performance although some degradation to the SNR0 may occur. On the other hand, if 

the data in one frequency bin is removed, the information at that frequency is lost and cannot be 

recovered in the synthesis procedure. In this case, the SNR suffers the largest degradation. 

Vm. SIMULATIONS 

The first simulation example deals with the generation of the best STFT over a finite number 

of analysis windows defined by the recursive class discussed in Section III. A synthetic signal 

which contains impulse, sinusoid and chirp components is generated. The result of using the opti- 

mum window selections is shown in Fig.9(a). The optimum window changes over different parts 

of the jammer signal according to the changes in the Renyi concentration measure. For compari- 

son, three STFTs with fixed window lengths are shown in Fig.9(b,c,d), in which the impulse, the 

sinusoid, and the chirp signals separately exhibit good time-frequency resolution. 

In the second simulation example, we implement the proposed jammer excision scheme and 

compute the respective BER. The signal is BPSK and the jammer over every information symbol 

randomly selects one out of three forms, an impulse, a sinusoid and a chirp signal. The BER curve 

is shown in Fig.10. For comparison, the BER curves with fixed window of k=l and k=5 are also 

given in Fig.10. It is evident from this figure that the proposed adaptive method offers improved 
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interference excision performance. 

CONCLUSIONS 

In this paper, a new adaptive time-frequency technique for interference excision in direct 

sequence spread spectrum communication was introduced. The proposed technique implements 

recursive analysis windows to allow efficient generation of a large class of STFTs with different 

spectral/temporal resolution properties. Concentration measures were applied to select the analy- 

sis window with the best jammer time-frequency power concentration. Central to our contribution 

is the demonstration that the strength as well as the localization of the jammer power in the t-f 

domain affects the STFT receiver performance. This demonstration underscores the fact that 

knowledge of the type of the interference excision system deployed at the receiver can be used by 

the jammer to reduce the system effectiveness in interference suppression. The paper presented 

simulation examples to illustrate the advantage of the proposed adaptive STFT excision approach 

over its fixed-window STFT counterpart. 

APPENDIX A 

In order to obtain the mean value and the variance of the decision variable, we recall 

E{p(l)p{n)) = b(n-l),EUV)pin)) = E(j(l))E(p(n)) = 0 

E(n(l)p(n)) = E{n(l))E{p(n)) = 0 

= —V tit AJk)wJn) (A.1) 
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L-l       L-lL-l 
E(<& = ZZ7TW X X X X ^m(fc)wm(Z)eM{n~°£(;(0/'(")) = 0 (A.2) 

LW(eJ )n = 0m A = 0/ = 0 

1 
L-l       L-lL-l 

W3) = ,-o  
LW(e   )n = 0 m k = Ql = 0 

M(»-0 
X 2 X X 4„(*W0*W   '*(»(/)/>(»)) = 0 (A.3) 

The variance, 

.L-l       L-lL-lL-l        L-l L-l 

L, W (e    •)'  „ = 0 m * = 0/ = On, = 0 m, *, = 0/, = 0 

jnJn-l) -M.(«i-J|) 
(A.4) 

Since E(p{l)p{n)p{l{)p{n})) = 5(Z-fi)5(Z, -n,), then 

,L-1       L-lL-l        L-l 
w,2) = (T^O* 

S ^ S HX ^m(^.^i)^(")^,("i) 
\LW(e    r   „ = 0/n Jt = 0n, =0/71,^=0 

/L-l       L-l 

LM/,   jOJ      Zu2u Zu 

\2 

A
m(k)wm(n) (A.5) 

L-l       L-lL-lL-l L-l L-l Eig'^= iv^hd xxxxxxxx Ajwmwmw»msv 
LW{e    )    n = 0 m k = 0l=0n, sOn^jsOI^O 

(Me 
M("-0 -M,(»i-'i)      . 

E{Kl)Kh))E{p{n)p{n,)) 

.L-l       L-lL-l       L-lL-l 

■ (T^TüJ E E S Z EI E ^«^»^.(Ow».»,) 
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ABSTRACT 

In this Chapter, the short-time Fourier transform (STFT) is employed for the rejection 

of nonstationary interference in direct sequence spread spectrum (DSSS) communication 

systems. The proposed interference excision approach is based on the attractive local- 

ization properties of the impulse responses of the multiple pole filters. These impulse 

responses have Gaussian-like shapes and decrease in bandwidth with higher pole multi- 

plicities. When used as data windows, they yield a large class of computationally efficient 

STFTs. Localization measures can be applied for determining the optimum window that 

maximally concentrates the interference in the time-frequency domain. Interference miti- 

gation is then achieved by applying a binary excision mask to the corresponding STFT for 

each data bit. The optimum correlator for the reconstructed jammer free signal is devel- 

oped, and closed form expressions for the receiver SNR are derived. Simulations show that 

there is a significant improvement in performance of the optimum receiver compared to its 

suboptimal counterpart, which is simply obtained by performing the correlation between 

the output of the excision filter and the original PN sequence. 

This work is supported by the US Air Force Research Laboratory. Rome. NY, contract no. F30602-96-C-0077 

214 



1.INTRODUCTION 

Interference excision in direct sequence spread spectrum communication (DSSS) is an 

important problem in both military and civilian applications. There are several techniques 

that have been proposed for this task. These techniques include adaptive notch filtering, 

decision feedback [1] and transform domain methods [2]. For jammer signals with broad- 

band frequency characteristics, but yet possess narrowband instantaneous bandwidths, 

time-frequency methods have recently been shown to be very effective in improving the 

receiver performance and reducing the bit error rates. One class of these methods im- 

plements linear excisions in which the data is processed using the wavelet transform or 

M-band/subband filter banks [3,4]. Another class applies bilinear transformations using 

time-frequency distributions for instantaneous frequency estimation, followed by time- 

domain excision filtering [5,6]. 

The short-time Fourier transform (STFT) is a linear time-frequency signal representa- 

tion that inherently suffers from the trade-off between temporal and spectral resolution [7]. 

The STFT employing a short data window provides a good temporal resolution, whereas 

that using a window of long time extent has fine spectral resolution. One solution of 

this incompatibility problem is to generate a large class of STFTs, which employ different 

windows with distinct characteristics. Some members of this class should be appropriate 

to describe slowly time-varying signals, while others must be set to provide better local- 

ization in rapidly time-varying environments. For a given nonstationary signal, the STFT 

within this class that yields the best temporal/spectral trade-off, or the highest possible 

concentration in time-frequency domain, should be chosen for t-f signal representations. 

Several concentration measures including those introduced in [8,9] can be used for this 

purpose. 

The application of STFT for interference excision in DS/SS communications using sparse 

grid and overdetermined time-frequency tilings is discussed in [10,11] and [12], respec- 

tively. In this chapter, we provide a new approach and a general framwork for the appli- 

cation of the STFT to nonstationary interference mitigation in DSSS communications. In 

this approach, a large class of different short-time Fourier transforms is generated using 

a multiple-pole infinite impulse response filter realized in cascading form is considered. 
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Members of this class have sufficient diversity in their temporal/spectral trade-off and 

are easily updated in time.. Further, the STFT using an impulse response of one filter 

can be recursively generated from those members corresponding to smaller filter orders or 

pole multiplicities. The choice of the optimum analysis window (impulse response) can be 

made using localization test criteria such as those discussed in [8,9]. Interference excision is 

then performed by either clipping or gating the high power values of the optimum window. 

STFT. The process is repeated for each bit or block of data and the choice of the window 

could therefore vary with time. We present the analysis of the receiver signal-to-noise ratio 

SNR, using binary excisions on STFTs. It is shown that different data windows applied 

to the same jammer waveform will result in a different value of SNR. The proper data 

window that is selected by the concentration measures maximizes the jammer localization 

and thus limits the interference spread in the t-f domain. By confining the jammer to small 

number of t-f bins, binary excisions can effectively remove the jammer energy, causing a 

minimum distortion to the spread spectrum signal and, in turn, improving the receiver 

performance. 

In traditional spread spectrum receivers, the signal is correlated with the PN sequence, 

which is known to both the transmitter and the receiver. When filtering techniques are 

applied for jammer excision, leading to enhanced receiver performance, the modified PN 

sequence and the original PN sequence will no longer be identical, and their correlation 

leads to suboptimal solutions. An optimum correlator, therefore, should be developed to 

combat the induced distortion of the PN sequence caused by the preprocessing excision 

filtering stage. The optimum correlator associated with STFT based interference excision 

system is derived and shown to depend on the analysis window, the interference time- 

frequence signature, and the white noise power. 

Section 2 gives a brief presentation of the STFT analysis and synthesis method. Multiple 

pole windows and their temporal/spectral localization properties are discussed in Section 3. 

Section 4 summarizes two concentration measures for the optimum data window selection. 

The overall scheme for the proposed adaptive STFT method for jammer excisions is given 

in Section 5. The closed form expression for the optimum receiver SNR is given in Section 

6. The performance of the traditional receiver implementing the STFT excision system is 

216 



also considered in Section 6. Simulation results are presented in Section 7. 

2. SHORT-TIME FOURIER TRANSFORM 

Short-time Fourier transform can be presented using two perspectives, namely the filter 

bank and Fourier transform[7,13]. Form the Fourier transform perspective, the STFT 

Xm(e>"k) of the signal x(n) is given by 

jf.(^) = J>(n - m)x{m)c-»™klN (1) 
m 

where k is the frequency sample number, N is the total of frequency samples, and w(n) is 

the moving data window. The synthesis method corresponding to the Fourier transform 

perspective is the Overlap-Add(OLA) method [13], which can be expressed as 

:E 
m   Jfc=0 

»(-) - EE*-<«*~)«*~ - EM») - fa(n)E-(»-) <2> 
where ym(n) is the inverse discrete Fourier transform at the time sample m.  It can be 

readily shown that if w(n) is sampled at sufficiently dense rate, then[l3] 

J2 ™{rn - n) = W(ej0),    y{n) = Ix(n)lV(ei°) (3) 
m 

It is clear from (3) that without altering the values of the STFT, the synthesized signal is 

the same as the original signal, 

In many applications, however, it is desired to synthesize a signal from a time-frequency 

function formed by modifying the STFT. For example, the purpose of the STFT method in 

DSSS jammer excision problem is to concentrate the jammer in a small area in t-f domain 

and remove its t-f signature via a binary mask. The synthesis is then performed on the 

masked STFT to recover the jammer-free original signal. If the STFT X(n,k) is modified, 

then the synthesized signal becomes a time-varying convolution between the input data 

sequence x(n) and an impulse response of a linear time-varying filter. 
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3. ORDER RECURSIVE SHORT TIME FOURIER TRANSFORM (ÖRFT) 

The order recursive short-time Fourier transform was introduced in [14] as an approach 

to generate a large class of STFTs whose members are generated from one another through 

simple recursions. The recursions are made possible by setting the analysis window hk(n) 

equal to the impulse response of a multiple pole linear time-invariant filter. The transfer 

function of /t*(n) can be expressed in the Z-domain as 

where 7 is the filter pole and the superscript k denotes the pole multiplicity. The filter 

corresponding impulse response is given by 

w = '1-^1^37" (6) 
It can be readily shown that the above sequence possesses the recursive property[14] 

Mn) = 7M"-l) + (l-7)Ä*-i(n) (7) 

Using the impulse response (7) as the analysis window in STFT leads to a similar recursion, 

Fk+1{n,u) = 7Ffc+1(n - l,w) + (1 - i)Fk{n,u) (8) 

where Fk{n,u>) denotes the STFT which corresponds to the filter order k, calculated at time 

n and frequency u. Equation (8) defines the order recursive Fourier transform(ORFT), in 

which the FT is recursive in both time n and filter order k. The block diagram of ORFT 

consisting of systems connected in cascade is depicted in Fig.l. The STFTs Fk(n,oj), 

k=l,2,...,K offer different trade-off between temporal and spectral resolutions. The trade- 

off is decided by the two variables in the problem, the filter pole and its multiplicity. 

Fig.2(a) shows the windows corresponding to k =1,2,...9 with 7 = 0.7, whereas Fig.2(b) 

shows the data window for a single pole filter with 7 changing over the range [0.5, 0.9]. 

Figure 3 shows the time and frequency characteristics of the window corresponding to 

different filter orders for 7 = 0.9. It is evident that higher filter order and pole values 

lead to longer extent data windows, and subsequently, finer spectral resolution. The fast 
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computational property of the members of the above recursive class of STFTs as well as 

the significant variation of temporal/spectral resolutions as a function of the analysis win- 

dow parameters cast multiple pole window STFTs as an attractive tool for nonstationary 

interference exci sion, as shown below. 

4. CONCENTRATION MEASURES 

The main objective of adaptive STFT is to decide, without human intervention or ex- 

tensive prior knowledge of the underlying signal characteristics, on the analysis window 

which offers the best time-frequency resolution. Procedures based on mathematical opti- 

mal criteria appears most promising. Renyi information of the third order has been shown 

to provide a valuable and effective information measure in the context of time-frequency 

distributions [8], 

"i=4E£l°gll^Fr(n,a,)||3 (9) 
^    n      w 

It is recognized that the maximum value of Vi in (9) is the one corresponding to the highest 

t-f concentration of the underlying t-f signal. Using the recursive class of STFTs presented 

in the previous section, we first proceed to calculate i>i for all members Fk{n,u). The 

maximum concentration measure is then determined, and the respective STFT is chosen 

as the most appropriate t-f signal representation. Another effective local concentration 

measure was introduced in [9] as: 

EE|5TFr(n,u;)|4 

n   w 
V2 =   (10) 

(Zi:\STFT(n,u)\*)> 
n    w 

The basis for choosing the optimum window rests on the intuition that high value of 

v2 reflects good time-frequency localization and high resolution. The ratio of the L4 

norm to the L2 norm of the STFT favors "peaky" distributions that places much of the 

signal energy into small region of the time-frequency plane, thus achieving a concentrated 

representation. 

Figure.4(a,b,c,d) depicts the STFTs of a chirp jammer signal using three rectangular 

data windows. The jammer-to-DSSS signal ratio(JSR) is 20dB, where SNR is set to OdB. 

The PN sequence length is set to L=128. The values of the two concentration measures as 
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functions of the window length are shown in Fig.4(e). In both cases, the maximum value 

is reached when the window length is 30 data samples. Indeed, by comparing Fig.4(b,c,d), 

it is clear that the STFT with window length of 30 samples is more concentrated than 

the other two based on the window lengths of 10 and 110 samples. Next, we consider the 

two cases of sinusoidal and impulse jammers. For both cases, STFTs using rectangular, 

Hamming, and Hanning windows are computed. For each type of window, the two afore- 

mentioned concentration measures are evaluated for different window lengths. The results 

for the sinusoidal jammer are shown in Fig.5(a,c)j whereas those for the impulse jammer 

are depicted in Fig.5(b,d). For the sinusoid jammer, both measures under all three win- 

dows point to the maximum window length as the one leading to the highest t-f concen 

tration. The opposite is true for the impulse jammer. It is clear that both concentration 

measures (9) and (10) give results consistent with Fourier analysis of windowed signals. 

5. ADAPTIVE STFT IN DSSS SYSTEMS 

Fig.6 shows the flow chart describing the steps in implementing the proposed recursive 

STFT-based interference excision method in PN spread spectrum communications. These 

steps can be lumped into five consecutive stages: selecting of the analysis window pa- 

rameters; computing STFTs; selecting the optimum STFT using concentration measures; 

masking the selected STFT; synthesizing the jammer-free signal; forming the decision 

variable and detecting the transmitted bit. In this section, we discuss an important issue 

relating to window selection and decision variable. 

Generating a class of infinite numbers of STFTs is neither feasible or necessary. In the 

following, we provide a mechanism to set the window parameters 7, K to take a finite 

number of values consistent with the PN length as well as the required temporal and 

spectral resolutions. According to [14], the effective window length is defined as 

^=i/(f>(«)2) L,=\±I (ii) 
\n=0 / 1 I 

which increases with increased values of k and 7. Since the minimum value of £^(7) = Lm,n 

is obtained at k=l, for a given 7, then the highest temporal resolution is achieved when 

using a single pole filter. By setting L\ = Lmxn, the value of 7 can be determined from 

(11).  The maximum effective window length Z<jfc(7) = Lmax is reached at the maximum 
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multiplicity k=K. A reasonable value of Lmax is the PN sequence length L. In the absence 

of the closed form expressions for hk(<y) > k > -1' Siven L and 'the maximum order K can 

be numerically determined by computing (11). The relation between 7 and K for L=1024 

is shown in Fig.7. It is evident from this figure that as 7 increases, fewer analysis windows 

can be generated in between I, and LK, which, in turn, narrows down the possible and 

available choices of the STFTs. 

Suboptimum detection of the information symbol, the decision variable can be formed 

from the correlation 

g = N£x(n)p*(n) (12) 
n=0 

where, p{n) represents the receiver PN sequence, N is the number of chips per information 

bit (we assume one sample/chip), and x(n) is the synthesized signal. From Section 2, if 

there is no modification made in the t-f domain, then the synthesized signal is equal to 

the original signal x(n) = x(n) . By substituting equation (4) in (12), we obtain 

a = —L-y; PV^E*^"") (is) 

where P(e^) is the discrete Fourier transform of the PN sequence. Since all the functions 

in (13) are in the transform domain, then the detection can be performed without the need 

to apply inverse transformations. If the binary excision function Am(k) is applied to the 

STFT, then the synthesized signal is modified to 

L-\ 

:E 
m   k=0 

V(n) = EE Am(k)Xm(e^)e^n (14) 

In this case, 

»-ü^s^^s^-^        <15) 
The STFT domain suboptimum detection scheme allows computational saving in two ways. 

First, the time domain correlation requires m inverse DFT to be performed, whereas only 

one DFT operation is required for the PN sequence in (15). Second, if the PN sequence is 
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repetitive, its DFT remains fixed for every bit, which in turn reduces on-line computations 

in the correlation scheme of Fig.S(b). 

6. TRANDITIONAL AND OPTOMUM CORRELATOR 

Assuming "1" is transmitted, the baseband received signal can be expressed as 

.r{i)-s(i) + j{i) + n{i) (16) 

where s(i) represents the PN sequence, j(i) is the jammer sequence, which is of zero-mean 

and covariance Rj{i), and n(i) is an additive white Gaussian noise sequence with zero 

mean and variance u\. It is assumed that the above three sequences are uncorrelated. 

In order to use the STFT presentations in Sections 2 and 5, we replace x(n) by r(n) and 

the STFT Xm(^) by Rm{ejwk). We also denote the desired signal as s(n) rather than 

p(n). With the application of the binary excision function Am(k) to the STFT at time m 

and frequency k, it can be readily shown that the synthesized signal is modified to 

i L-i M L-y 
r'{n) = Tw@5) S r(0 £ £ ^<*)»»(0^(n-° <17) 

where R and W are the DFTs of the received data and the data window,tom(/), respectively. 

The performance of the traditional suboptimum and optimum correlators can be anal- 

ysed by expressing the reconstructed signal in the matrix form. The two inner summations 

of equation (17) can be written as 

£ £ A»(fc)u>m(0eiu*(n~° = Ä*(n,/)W(/) (18) 
m=l Jt=0 

where superscript 't' denotes matrix or vector transpose, and 

A{n,l) = [Aiiiy^-'l-.AiiLy^-O^ ,AM{l)e*"<n-l>...AM{L)e>u'-ln-t)]t 

Vf(l)=[W1(l)...W1(l), ,WM(0-WM(0]t (19) 

Accordingly, 
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L-X Af   L-l i-1  ,    , ,     x 

■ ■(«) = E r(0 E E 4m(*Ki(0^(n-0 = E KOÄ*(n, Z)W(/) = AW R        (20) 
L-l 

E 
1=0 

where 

ÄW = [Ä*(n, l)W(l)....Ä*(n, L)W(I)]', R = [r(l) r(L)f (21) 

Then, the vector Y of the output samples in (2) can be expressed as 

Y = 
y(i) 

y(L) 

A*(1,1)W(1)   •••   Ä*(1,L)W(L) r(l) 

r(L) 

= BR (22) 

At(L,l)W(l)   -••   r(I,I)W(I) 

Since binary jammer excision fully removes the jammer power, the only components in 

(22) are the signal and the white noise, 

where 

Y = BR = BS + BN = Ys + Y;v 

S = [5(1) s(2) s(L)f ,N = [n(l) n(2) n(L)]' 

(23) 

Ys = BS = 

A*(1,1)W(1)    •••   Ä*(1,L)W(L) 

Ä*(L,1)W(1)   •••   Äf(L,I)W(I)_ 

*(1) 

*(L) 

TV BN = 

3*(1,1)W(1)   •••   A*(1,Z,)W(L) n(l) 

n(L) 

(24) 

Ä'(I,1)W(1)   •••   A\L,L)W(L) 

Unlike the traditional receiver, where the decision variable is obtained via (12), in the 

case of optimum receiver, the receiver PN is modified before the correlation with r (n). 

Denote the modified PN sequence at the receiver as h(n). Then, the decision variable is 

given by 
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i -■ t r (WO - IivUH"Y = ^H^Y, + J^*"^       (25) 
t=0 

where H = [h(l)...h(L)]h , and superscript 'H' denote the Hermition operator.The receiver 

signal-to-noise ratio, SNR0Ut , is 

SNR, 
iH H"Y5 E2[g) 

mit 

E [H"YsYf H] - |HHYs|2 + £|H*Y,v|2     VarW 
(26) 

Since 

then 

E (YNY%) = E [BNN
H

B
W

] = BE [NNH] BH
 = clBBH 

HHYsYfH   
SNRout = (27) 

E [H"YSY£H] - |HHYS| + ainhrBBHH 

The sequence H must be correlated with the original PN sequence S. Therefore, E |H Ys 

Y$ H| is a fourth order function of S. If we define the relationship between H and S by 

the modification matrix C, then H = CS and 

E [HHY5Yf H] = E [SHCHBSS"BHCS] (28) 

Let D = CHB ,then 

Since 

E [HHY5Yf H] = E [SHDSSHDHS] = E |sHDS| 

S"DS = £]TS(0£(z\j)S(j)S,-, 

(29) 

j    « 

then 

E S"DS    =E E E E E S(i)D(i,j)S(j)S(k)D*(l, k)S(l) 
i      j      k      I 

= E E E E W JW. 
fc)£ (s{()su)S{k)S{i)) 
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= EX^0^^)+EEI^i)l2 + EE^i)^(i>0-2ElW0l2 (so) 
i     k •      3 «      3 

and 

£ [H»Y5Y»H]-H»YSY»H = (EE P(«.i)l2 + EE^i^ü'-') - 2E P(M)N 
(31) 

Define 

C* = 
c2 ,B=[b, bL 

where c,- is a row vector and b,- is a column vector, and 

Cl" = [ c,   c2 CL Bl = 
ixL2 

bi   0 

0    b2 

0    0 

0 

0 

0 

bL 

B2 = 

B3 = 

b! 0 • • • 0 b2 0 • • • 0 b3 • • • 

0  bj 0 • • • 0 b2 0 • • • 0 b3 

bL0 

•• bL 

L*xL 

0 

0 

B   0 

0    B 

0    0 

Obi 

B4 = 

L7xL 

b, 

b2 

bL 

0 

0 

0 

B 
VxL* 

0 • • • 0 bj 0 • • • 0 b2 0 • • • 0 b3 • • • 

Using the above matrices, 

EW.OI2 = C1HB1B1HC1, EEl^'i)!2 = C1HB2B2HC1, 
t «'      3 

EE^JW«') = Cl»B2B3"Cl. 
'       3 

Accordingly, 

(E |H"YS|)
2
 = Cl"(B4B4H)Cl = ClHQCl (32) 

£(|H"YS|
2
) - (E |H"YS|)

2
 = Cl"(B2B2H + B2B3* - 2BlBl")Cl       (33) 
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HHE{YNY%)H = alClH(B2B2H)Cl (34) 

The receiver SNR in (26) can be written as 

(£|HHY5|2 

SNFLa = 
£(|HHY5|2) - (E |HHYsf)2 + E |H"YS|2 

Cl^QCl ClgQCl 
Clw((l + CT2)B2B2H + B2B3H - 2B1B1H)C1      C1HPC1 

(35) 

where 

Q = B4B4H , P = (1 + a2)B2B2H + B2B3H - 2BlBl" (36) 

A. Traditional receiver 

For the traditional correlator, H is set equal to the PN sequence, i.e., C=I. Performing 

the correlation between the synthesized signal and H leads to suboptimal performance, 

since this process doesn't take into account the distortion effect of the excision filter on 

the original PN sequence. The distortion entailed on the PN sequence depends on the 

binary excision mask. In Fig.9, we show the PN sequence distortion under the impulse, 

sinusoidal and chirp jammer excision. It is evident from the figure that the sinusoidal 

jammer excision results in the worst PN distortion, whereas the impulse jammer causes 

the least distortion. The impulse jammer concentrates on a relatively small area in the t-f 

domain. In this case, after excision and signal reconstruction, the only change in the PN 

sequence is just the energy, and as much, the information in the PN sequence is preserved. 

Yet for sinusoidal jammer, after excision, since we lose several frequency bins in the PN 

sequence which one is recoverable, the reconstructed PN will encounter severe distortion. 

B. Optimum receiver 

In equation (35), since all elements in analysis window and excision mask are non- 

negative, matrix P is symmetric, nonnegative, and positive definite. Equation (25) may 

be viewed as the Rayleigh Quotient problem.   Define ClH = P1/2C1, where P1/2 = 
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X,- AJ
/2

U,V-. The variables A,- and v{ are the ith eigenvalue and its respective eigenvector 

of P. Equation (35) can then be expressed as 

bUHout- ciHCl 
C1K[(P-1/2)*QP-1/2]C1 

C1HC1 

It is well known that {SNR0Ut)max corresponds to the largest eigenvalue of (P"1'2)" Q 

P_1/2. If the corresponding eigenvector is denoted by Clmai, then the optimum corre- 

lator is given by Cl^, = P",/2Cimox. Once the modification matrix C is obtained, the 

correlation between r'(n) and h(n) can be performed. 

7. SIMULATIONS 

Computer simulations are given below to show the improvement in the receiver SNR 

using the solution in (36). In general, with the cancellation of the jammer in the t-f 

domain, white noise and signal components at the excised t-f bins are removed as well. 

This in turn will result in the distortion of the reconstructed PN sequence. In Fig.8, the 

impairment of the PN sequence under jammer signal cancellation is shown. The length 

of PN sequence is taken as 128, and a rectangular window of A samples is employed. Ten 

time slices are cancelled for the impulse jammer (index 59 to 69), ten frequency slices 

for the sinusoidal jammer (index 59 to 69) and ten diagonal slices for the chirp jammer 

(main diagonal and the adjacent upper and lower diagonals). Fig.8 (a), (b), (c) depicts 

the degree of the distortion due to the impulse, sinusoid, and chirp jammer signals. The 

results show that the worst distortion occurs under the sinusoidal jammer case, whereas 

the best one is achieved in the case of impulse jammer. For the sinusoidal jammer, the 

entire 128 PN sequence is impaired. Yet for the impulse signal cancellation, only few chips 

of the original PN sequence are distorted in amplitude, while the rest are left intact. The 

number of distorted chips depends on the analysis window length as well as the number of 

excised t-f bins. The results clearly show that, in all three cases, the original PN sequence 

doesn't match the reconstruction PN sequence. 

Figure 9 shows the receiver SNR for both the suboptimal and optimum receivers. The 

length of the PN sequence used is 16. A rectangular analysis window with length equal to 

8 was employed. It is evident from the figure that the higher the number of the excised t-f 

bins the worse the performance of the traditional receiver. On the other hand, the optimum 
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receiver maintains the same performance level for both impulse and chirp jammers. It 

should be noted, however, that the optimum receiver performance will deteriorate when 

the number of t-f slices excised exceeds the window length, in which case the removed 

desired signal becomes unrecoverable. For a sinusoidal jammer, although the receiver 

SNR for the optimum receiver SNR monotonically decreases with increased number of the 

t-f bins cancelled, yet the performance is still better than that of the suboptimum one. 

The prime reason for the difference in performance between the sinusoidal jammer and the 

other two types of jammer signals is that in the STFT analysis, there is redundancy along 

the time index which does not exist along the frequency axis. When several consecutive 

time slices are cancelled, the information in the cancelled t-f bins can be restored with the 

information held in the rest t-f bins. Yet if one frequency bin is cancelled, the STFT will 

lose the information in that bin, and the reconstructed PN will be considerably different 

from the original one. 

Also shown in Fig. 9 the receiver performance when the receiver PN sequence is distorted 

in the same exact way as the received PN sequence. That is, the sequence encounters the 

same binary excision applied to the incoming data. The performance is at best equal to 

that of suboptimum receivers, which is achieved for the sinusoidal jammer case. 

8. CONCLUSIONS 

In this Chapter, a new adaptive time-frequency technique for interference excision in 

direct sequence spread spectrum communication was introduced. The proposed technique 

implements recursive analysis windows to allow efficient generation of a large class of 

STFTs with different spectral/temporal resolution properties. Concentration measures 

were applied to select the analysis window that provides the best jammer time-frequency 

power concentration. The jammer signal is excised in t-f domain using a binary mask. 

Central to our contribution is the demonstration that the strength as well as the localiza- 

tion of the jammer power in the t-f domain affects the STFT receiver performance. This 

demonstration underscores the fact that knowledge of the type of the interference excision 

system deployed at the receiver can be exploited by the jammer to reduce the system 

effectiveness to interference suppression. 

We have also derived the optimum receiver for interference excision based on STFT 
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analysis. Traditional detectors correlate the receiver PN sequence with the reconstructed 

PN sequence from STFT. The proposed optimum scheme, however, takes into account 

the distortion of the PN sequence caused by the jammer cancellation and is shown to 

yield enhanced receiver performance. Simulation results show significant improvement in 

the receiver SNR when the optimum receiver is implemented in place of its suboptimum 

counterpart. 
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ABSTRACT 

In this paper, the short-time Fourier transform(STFT) is 
employed for nonstationary jammer excision in direct sequence 
spread spectrum(DS/SS) communication systems. The received 
signal is first analyzed by STFT. The localized inlerferers in the t- 
f domain are then removed by binary excisions. Finally, the syn- 
thesized signal is correlated with the PN sequence and passed to 
the detector. The selection of both the data window and the distri- 
bution of the binary excision values in the t-f domain are key to 
effective removal of the jammer with a minimum distortion of the 
DS/SS communication signal. Proper data windows localize the 
interference in as few t-f bins as possible, whereas good binary 
excision assigns zero values to only those t-f bins contaminated by 
the jammer t-f signature. The closed form expression of the 
receiver SNR is derived as a function of the binary excision values 
in the t-f domain. The specific cases of impulsive and sinusoidal 
jammers are analyzed. 

1. INTRODUCTION 

Interferer excision in spread spectrum communication is an 
important problem in both military and civilian applications. 
There are several techniques which have been proposed for this 
task. These technique include adaptive notch filtering, decision 
feedback(l] and transform domain methods[2]. For jammer sig- 
nals which have broadband frequency characteristics, but yet pos- 
sess narrowband instantaneous bandwidths, lime-frequency 
method have been shown to be very effective in improving the 
receiver performance and reducing the bit error rate[3,4,5,6]. The 
application of STFT for interference excision in DS/SS communi- 
cations using sparse grid and overdetermined time-frequency til- 
ings is discussed in 17] and [8], respectively. In this paper, we 
extend the application of the STFT to nonstationary interference 
mitigation in DS/SS communications. We present the analysis of 
the receiver signal-to-noise ratio, SNR, using binary excisions on 
STFTs. It is shown that different data windows applied to the 
same jammer waveform will result in a different value of SNR. 

Proper data windows maximize the jammer localization and 

This work is supported by Rome Lab. contract No. F30602-96-C-0077. 

thus limit the interference spread in the t-f domain. By confining 
the jammer to a small number of t-f bins, binary excisions can 
effectively remove the jammer energy, causing a minimum distor- 
tion to the spread spectrum signal. We stress the fact that not only 
the jammer power affects the receiver SNR, but also its t-f signa- 
ture. The best and the worst jammer power distributions in the t-f 
domain in view of STFT-based interference excision are delin- 

eated. 
The receiver SNR using binary t-f excision applied to 

STFT is analyzed in Section 2. The window effect on SNR with 
two special cases, namely, impulsive and sinusoidal jammers are 
considered in Section 3. The binary excision is represented in Sec- 
tion 4 by a masking matrix. The effect of the structure of this 
matrix on the receiver SNR is also discussed. 

2. RECEIVER SNR 

The DS/SS system is shown Fig.I. Assuming "I" is transmit- 
ted, the baseband received signal can be expressed as 

r(i) = />(') +K'") + "(') (1) 
where {pli)} represents the PN sequence, which is known to both 
the transmitter and the receiver, {j(i)) is the jammer sequence, 

which is of zero-mean and covariance {Rj(i)}, and [n(i)) is an 

additive white Gaussian noise sequence with zero mean and vari- 

ance o2. It is assumed that the above three sequences are uncor- 

related. The decision variable at the correlator output is given by 
i-t 

g = £ r('>(/) (2) 

where L is the length of PN sequence'. If jammer excision is per- 
formed prior to despreading, then the received signal is modified 

to r'{i). and the corresponding decision variable becomes 

g- =  £ r(i)p(i) (3) 
i = 0 

The receiver SNR is commonly defined as[9J 

SNRo = g"|gl 
varlg'] 

(4) 
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The primary objective of all interference excision techniques is to 
maximize SNRo for a large class of interfering signals. The STFT- 
based interference excision system is most effective in mitigating 
jammers which are highly localizable in the t-f domain. 

The signal synthesis from the STFT can be simply performed 
using the overlap addition(OLA) method described in [10]. If the 
binary excision functionAn(k) is applied to the STFT at time m 
and frequency k, then the synthesized signal is modified to 

t-1     L-l 

E{g\) = IZZ^KW 
LW(r )„ * o m * = o 

(7) 

The expressions of the variances of the above three components 
are given, in [11]. From these expressions and above mean value 
equations, the general expression of the receiver SNRo is given by 
equation (8). If the preprocessing is disabled, i.e., there is no jam- 
mer excision, ihen Am(k)=l and the SNRo simplifies to [12] 

L 
SNR„„ = 

1 
t-lt-1 

*/0) + o% 
(9) 

-XIZ^wwo« /<0,<n-J) 

LW(er ) m tcOI'O 

where R and W are the DFTs of the received signal and the data 

window, wm[l), respectively. From (3) and (5), 

i-l     t-lt-l 

(5) 

g - 
1 2III^*>".w«MC"~V(0rf»>> 

t-I      L-\L-\ 
1 Iin^W0'W"",)i('W») 

L-l       I-IL-I 
1 

i*w(e  ;n = 0 m *-o;*o 

= si+*i + ^ (6) 

Since the three components in the received signal are independent, 

£(«•) = E(g\) + E(£) + E(g'3) 

var{g') = var(g\) + var{g{) + var{g3) 

Using the properties of p(i), j(i) and n(i), we have 

Ei&) = E{g3) = ° 

3. WINDOW EFFECT ON SNR 

In the following, we examine the effect of the data window on 
SNRo expression (8) with the two specific cases of impulsive and 
sinusoidal jammers. 

If the jammer is an impulse, i.e., j(i) = pS('-'o)» ^ 

SNRo takes the form (10). All signals in the t-f region (mJO, 
m € Q, where Q is a set of integer values chosen from [1 ,L], are 

removed by setting the binary coefficients Am(k)=0, me Q, 

whereas all signals in the complement t-f region (m,k), me Qh 

left intact by setting the binary coefficients AJk)=l,m e Q. These 
two conditions simplify equation (10) to the form (11). Two 
observations are in order. ])The first summation term in the 
denominator is zero if i"0 e Q and the data window span is equal 

to or smaller than that of the t-f strip meß. 2)The term with 
overlapping windows in the denominator takes a minimum value 
if w (i) = 5(m - /'), i.e., the window is a unit sample sequence. 

In this case SNRo is maximum and equal to 

SNR   = 2 
On 

(12) 

SNRo = 
Vn=.Om 1*0 / 

i-lL-1       1-1 

i Jt = 0/ = 0m,/, =0 

IXXII^^,(lW'K,('))«/'.'1)r
M,'-'|,+o;XISIV»)^,(*K('K,(0 

i.-IL-I 

;xi: 
m l = 0/=0m. 

(8) 

SNR   = 

rL-\      t-1 \2 

VnsOmt'O ' 
L-\L-\ 

(10) 

m m. k = 0 m Jt «Of*0m. 

5W/?   = 

p'XI I ^(*Mmi<* WoK„('o) + «-I I IX^(*M.,(*K(O^(0 

(   I   W„(0)j 
\n, me 5 '__ 

VmeB ' |Vme5 '      m,m e 5m,.m e 5,m#m,'» 0 

"-(Ow./Or 

01) 
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If the jammer is a sinusoid, j[i) = pexpO'(27i/I)*00. then 

the corresponding DFT is p8(Jk - *0). It can be readily shown 

that for a sinusoidal jammer, the signal-to-noise ratio of the DS/SS 

receiver implementing STFT is (13). 
If we only set the peak value of the STFT at the frequency 

Jt=Jt0 to zero, i.e., Am(ko)=0 and AJk)=l, k*k0, then (13) simpli- 

fies to (14). It should be noted that by doing so, the jammer is not 
2 

entirely removed, as evident by the appearance of p    in the 

denominator of equation (14). The jammer is removed in its 

entirety, however, if we set  Wm{k-k0) = 0, k*k0, which 

amounts to using a rectangular data window with the appropriate 

length. In this case, SNRo can be expressed as 

(15) 

Concentration measures such as those introduced in [13,14] 

can help in selecting the optimum windows. 

4. MASKING EFFECT ON SNR 

Not only the jammer power will affect the receiver SNR, but 
also its position in t-f domain. Jammer position determines the 
binary excision(mask) function matrix. Suppose the jammer occu- 
pies L t-f bins, which are to be removed by proper masking, the 
following analysis shows that the positions of these L bins influ- 

ence the SNR performance. 
Under the assumption that the jammer is entirely removed by 

setting the corresponding L t-f binary coefficients to zeros, equa- 

SNR. = <^D 

implifies to (17). Let   X = ^jlAJk)wm{tt)    . which 

If the jammer frequency does not coincide with any of the STFT 
frequency bins, then its power leaks over the entire t-f place. Miti- 
gating the interference may then be achieved by carefully select- 
ing the region of highest jammer concentration and setting the 
corresponding coefficients AJk) to zero. If we donate C as the 

jammer power remained after setting q t-f bins to zero, then the 

receiver SNRo becomes 

lion (8) si: 

can be expressed in the matrix form (18). If x^t donate the ele- 

ments of X, then the SNR expression (17) becomes 

SNRo - L-1L-1 
2rr _? 

(19) 

SNR. = <M^ 
C + o2 

(16) 

* = o;=o 
Since all the elements in the masking matrix A and the window 
samples are nonnegtive, all the elements in X are nonnegtive, then 

The trade-off between jammer removal and desired signal distor- 
tion is evident in equation (16). As the number of t-f binary coeffi- 
cients assuming zero-value increases, i.e., q increase, the 
numerator in (16) decreases, but also less jammer power is 
retained, i.e., C decreases. 

/L-1I-I       \2     t-lt-1 
(20) 

The equality holds when there is only one nonzero element in the 

summation. The closest the values of xk_}, the larger the SNRo. 

SNR   = 

(£-1       L-1 \2 

n -0 m k = 0 ' 
L-V L-lt-1 

p2IIZV'^W-WV-W^'XIIS^(*M»I(*)"-(0'»»I(O 
m t = O/=0m, m k = Offi, 

SNR. = 
(1/£)(*,-1)2Z.VV°) 

L-\ 

(13) 

(14) 

SNRo = 

P2I     I     ZWmlk-kJWu<Lk-kj*<£v.-l)LW>i/°) 
m * = 0,l*t0m, 

/L-i      t-1 \2 /t-11-1/ \\2 

IIS V*K.(»> 2 II^KW 
V« = 0 in k - 0 

t-lt-1 L-lL-i/ Y A 
io-1115>.<*)v*)"'.<ow..l(o   

IO-11 I/u*>w."<,> 5>«1<*K,,<O 
k = 0l*0\mt Am / 

(17) 

X = 

' ,4,(0)       A2{0)    ...    AM{0) 

,4,(1)       >42(1)    ...    AM{\) 

Al[L-l)A2{L-l)...AM(L-\) 
LxM 

H-,(0) *-,(!) ... *-,(£.-1) 

H-2(0) w2(l) ... w2(L-l) = AW (18) 

MxL 
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It is clear from (18) that the removal of L elements from one 
row in A matrix yields the largest difference among the elements 

in X, i.e., the smallest SNRo. In this case, *u range from 0 to 

Wie'0). If the L elements are removed form one column of A, 

i.e., cancelling the coefficients in one time slice, x^, will have the 

smallest range, which is [W[ei°)-max{w(n)),W{eJ )]. This 

leads to the largest SNRo. One interpretation of the above result 

lies in the fact that for STFT, due to the moving window, there is a 
redundancy in the information along the time axis, yet there is no 
redundancy along the frequency axis. If the data in one time slice 

is removed, the adjacent lime slice will still include most of the 

data samples, depending on the overlapping pattern of the moving 

window. As long as the overlap is not sparse, the information lost 

is insignificant. The signal may, however, encounter some energy 
attenuation. This kind of binary excision will not substantially 

decrease the receiver performance although some degradation to 
the SNRo may occur. On the other hand, if the data in one fre- 
quency bin is removed, the information at that frequency is lost 
and can not be recovered in the synthesis procedure. In this case, 

the SNR suffers the largest degradation. 

5. CONCLUSION 

The receiver performance of DS/SS communication system 
implementing the STFT and binary excision for jammer mitiga- 
tion is analyzed. The closed form expression of the receiver SNR 
has been obtained. Based on this expression, the window and 
masking effects on the SNR have been delineated. It is shown that 
different windows depict the jammer in t-f domain with different 
resolutions. The best resolution combined with the proper binary 
mask yield the highest receiver SNR. The position of the jammer 
in the t-f domain, i.e. the structure of the masking matrix signifi- 
cantly affects the receiver performance. It is shown that the high- 
est SNR is obtained by masking a time slice, while the lowest 
SNR is a result of masking a frequency bin when only L coeffi- 

cients can be removed. 
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ABSTRACT 

In this paper, we show the effectiveness of applying concen- 
tration measures in the time-frequency (t-f) plane to remove non- 
stationary interference in direct sequence spread spectrum 
communications. These measures are used to select the optimum 
window in short-time-Fourier transform (STFT). This window 
yields improved localization of the jammer and, subsequently, 
allows its excision with minimum distortion of the desired signal. 
The expression of the receiver SNR is derived as a function of the 
binary excision values in the t-f domain. The two specific cases of 
impulsive and sinusoidal jammers are analyzed. 

I. INTRODUCTION 

The application of STFT for interference excision in DS/SS 
communications using sparse grid and overdetermined time-fre- 
quency tilings is discussed in [1] and [2], respectively. 

In this paper, we extend the application of the STFT to non- 
stationary interference mitigation in DS/SS communications. We 
present the analysis of the receiver signal-to-noise ratio, SNR„, 

using binary excisions on Sins. It is shown that different data 
windows applied to the same jammer waveform will result in a 
different value of SNRg. The proper windows maximize the jam- 

mer localization and thus limit the interference spread in the t-f 
domain. By confining the jammer to small number of t-f bins, 
binary excisions can effectively remove the jammer energy, caus- 
ing a minimum distortion to the spread spectrum signal. A con- 
centration measure is applied to select the window of maximum 
interference localization. 

The receiver SNR using binary t-f excision applied to STFT 
is analyzed in Section II. Two Special cases are considered, 
namely, impulsive and sinusoidal jammers. The concentration 
measure for optimum window selection and computer simulations 
are discussed in Section III. 

D. RECEIVER SNR 

The DS/SS system is shown Fig.l. Assume "1" is transmit- 
ted, the baseband received signal can be expressed as 

'(0 = />('")+ .7(0+ n(0 (1) 

where {p(i)) represents the PN sequence, which is known to both 
the transmitter and the receiver. U(0) is the jammer sequence, 

•This work is supported by Rome Lab, contract No. F30602-96-C-0O77 

which is of zero-mean and covariance {£,•(<)}> and {n(i)} is an 

additive white Gaussian noise sequence with zero mean and vari- 

ance <s\ . It is assumed that the above three sequences are uncor- 

related. The decision variable at the output of the correlator is 
given by 

L-\ 

g = X r<'"WD <2> 
;-o 

where L is the length of PN sequence. If jammer excision is per- 
formed prior to despreading, then the received signal is modified 
to r'{i), and the corresponding decision variable becomes 

i-i 

«• = Z rVMO 0) 
The receiver SNR is defined as[3] 

fVl 
vorig'] 

The primary objective of all interference excision techniques in 
spread spectrum communication is to maximize SNRo for a large 
class of interfering signals. The STFT-based interference excision 
system is most effective in mitigating jammers which can be 
highly localized in the t-f domain. 

The signal synthesis from the STFT can be simply performed 
using the overlap addition(OLA) method described in [4J. If the 

binary excision function /!„(*) is applied to the STFT at time m 

and frequency *, then the synthesized signal is modified to 

''<"> = —ho-I Z /u*)*,y V"'" 

SNRo = (4) 

LW(e    )n((g 

(5) 

where R and W are the DFTs of the received signal and, the data 
window, vm(l), respectively. From (3)and (5) 

L-X      L-lL-\ 

g = 
1    Z Z Z Z Aj»wJ»eia,l"~npWpw 

iW(A,fo' m k.01-0 

t-I      I-li-l 
1   EXZSV*K.<')<M<" 

TJBTZXIIV*)"'. 
(<   /n>0m I-0/-0 

j(l)p(n) 
>Omi«0/«0 

L-I      L-lL-l 

LW( 
,{l)e n(l)p(n) 

«' + £ + £ (6) 
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Since the three components in the received signal are independent, 
then 

£(*■) = £(«;) + £(&') +£(«3> (?) 

var{g') = var{g\) + var(gj) + var(£) (8) 

It can be readily shown that £(£) = £(«j) = 0, and 

The variances of the above three components are given by 
(9), (10), (11). The corresponding SNRo is given in (12). If there is 
no jammer excision, AJk)=] and the SNRo simplifies to the well 

known formula [5] 

SNR    = <^ 1-3-03) 
"     L\(0)Wi{eJO)*L2cW{ei0)     A/0) + c2. 

In the following, we examine two specific cases of the general 
SNRo expression (12)under impulsive and sinusoidal jammers. 

A. Impulsive Jammer 
If the jammer is an impulse, i.e., j(i) = 8(i-i0), the SNRo 

takes the form (14). All signals in the t-f region (mjc), meß, 
where Q is a set of integer values chosen from [1JL], is removed 
by setting the binary coefficients AJk)=0, me Q, whereas all 

signals in the complement t-f region (m JO, m e Q is left intact by 

setting the binary coefficients AJk)=l,me Q. These two condi- 
tions simplify equation (14) to the form (15). Two observations 
are in order l)The first summation term in the denominator is 
zero if i0 e Q and the data window span is equal to or smaller than 

that of the t-f strip m e Q. 2)The term with overlapping windows 
in the denominator takes a minimum value if wm(i) = 6(m-i), 

i.e., the window is a unit sample sequence. In this case SNRo is 
maximum and equal to 

SNR = (m-1)7   =1 
oj(m-l)2 cl 

(16) 

B. Sinusoidal Jammer 

If the jammer is sinusoid, j{i) = Be , then the corre- 
sponding DFT is B5(Jfc-*0) . It can be readily show that for a 

sinusoidal jammer, the signal-to-noise ratio of the DS/SS receiver 
implementing STFT is given by (17). If we only set the peak value 
of the STFT at the frequency *=*<, to zero.i.e., AJko)=0 and 

AJk)=l, k * *o, then equation (17) simplifies to (18). It should be 

noted that by doing so, the jammer is not entire removed, as evi- 

dent by the appearance of B7 in the denominator of equation (18). 
The jammer is entirely removed if we set Wm(k-k0) = 0,***«, 

which amounts to using a rectangular data window with the 
appropriate length. In this case, SNRo can be expressed as 

SNR. q-D (19) 

On the other hand, if the jammer frequency does not coincide with 
any of the STFT frequency bins, then its power leaks over the 
entire t-f place. Mitigating the interference may then be achieved 
by carefully selecting the region of highest jammer concentration 
and setting the corresponding coefficients AJk) to zero. If we 
donate Cas the jammer power remained after setting q t-f bins to 

t-i    t-i 

\LW(t    )„.o„*.0 / 
^;> = (-^J ZZZV*K.<"> 

\LW{e" )) „4.0/.0.I, 

-/,)« 
■ja>t{l-l,) 

(\/L) 
1-1      L-X * 

ZZZ*„<*K.<"> 
..0»4-0 

SNRo = L-U-l       1-1 

ZZZZ 
m k.0l*0m,l,-0 
11 III AJk)Ami(k)Wm(l)Wmi(ll)RiU-ll)''

i"tU'',) ■ ~2 +°-ZZ il.Amm*mlm»mWwmiw 

(9) 

(10) 

(ii) 

(12) 

(i/i) zziv*>--<-> 
■ «On 1-0 

SNR.= L-ll-l 

ZZ Z A.mwJWJ+dl Z Z Z^wV^-o*«^ 

SNR.= 

(     Z     W«<°>j 
W «■•»■« . ' 

[ Z ".(J*«4 2 ^<°)f+ Z      Z     2>.<'>%<')} 
t,al( / lV->«C '      m.m*Qml.m*Q.m*m,l-0 

(14) 

(15) 
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zero, then the receiver SNRo becomes 

SNR, = {J^1 (20) 
C+0-; 

The trade-off between jammer removal and desired signal distor- 
• tion is evident in equation (20). As the number of t-f binary coeffi- 
cients assuming zero-value increases, i.e., q increase, the 
numerator in (20) decreases, but also less jammer power is 
retained, i.e., C decreases. 

m. CONCENTRATION MEASURE 

The main objective of adaptive STFT is to decide, without 
human intervention and extensive prior knowledge of the underly- 
ing signal characteristics, on the analysis window which offers the 
best time-frequency resolution[6]. Procedures based on mathe- 
matical optimal criteria appears most promising. Renyi informa- 
tion of the third order has been shown to provide a valuable and 
effective information measure in the context of time-frequency 
distributions[7], 

■   m 

It is recognized that the value of v corresponding to the highest 
resolution t-f signal representation should be larger than others. 
As such, we proceed to calculate v for different windows and 
window length of STFTs and examine its value. The window 
maximum concentration measure is determined and the respective 
STFT is chosen as the most appropriate t-f representation. 

Another local concentration measure is introduced in [8] as: 

XSl5r/T(n,io)|4 

*, = ^-2- r= (22) 
(X207Fr(n,co)|'J 

The basis for choosing the optimum window rests on the intuition 
that high value of v reflects good time-frequency localization and 
high resolution. The ratio of the L, norm to the L^ norm of the 
STFT favors "peaky" distributions that place much of the signal 
energy into small region of the time-frequency plane, thus achiev- 
ing a concentrated representation. 

In Rg.(2,3), a spread spectrum signal is generated with L is 
128. In order to find the effect of the different window length on 
the concentration measures, we change the lengths for three types 
of the windows, namely rectangular, Hamming and Harming win- 
dow. The sinusoidal jammer is considered in Rg.2 and the impul- 
sive jammer is considered in Fig.3. And the criterion (21) is 
employed. The same simulations are performed using the criterion 
(22) and the results are shown in Fig.4 and Fig.5i For sinusoid 
jammer, it is clear that the longer the window length, the better the 
concentration of the jammer signal in t-f domain and is repre- 

sented by larger value of concentration measure. The opposite is 
true for impulsive jammer. 

IV. CONCLUSION 

In this paper, we provided closed form expressions for the 
receiver SNR while implementing STFT-based interference exci- 
sion in DS/SS communications. Both the data window of STFT 
and the binary excision values applied in the t-f domain are impor- 
tant to effectively remove the jammer without distorting the 
desired spread spectrum signal. Proper data windows localize the 
interference in as few t-f bins as possible whereas good binary 
excision assign zero values to only those t-f bins contaminated by 
the jammer t-f signature. In order to select the proper data win- 
dows, concentration measures can be applied to STFTs of differ- 
ent data windows to select the one which is of high localization. 
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Abstract 

In this paper, we use recursive short-time Fourier 
transforms (STFT) for interference excision in PN spread 
spectrum communication systems. The proposed excision 
method is based on the attractive localization properties of 
the impulse responses of the multiple pole filters. These 
impulse responses have Gaussian-like shapes and 
decrease in bandwidth with higher pole multiplicities. 
When used as data window before Fourier transformation, 
they result in a large class of computationally efficient 
SJ t IS. Localization measures can be applied to determine 
the proper window(impulse response), which maximally 
concentrates the jammer in the time-frequency domain. 
Interference mitigation is then achieved by applying a 
binary excision to the STFT employing the optimum win- 
dow for each data bit. We show that this method permits 
both data-dependent windowing and filtering, and leads to 
improved BER performance of the DS/SS system. 

I. Introduction 

The short-time Fourier transforms (STFT) is a linear 
time-frequency signal representations which inherently 
suffers from the trade-off between temporal and spectral 
resolution [IJ. The STFT employing a short data window 
provides good temporal resolution whereas that using a 
window of long time extent has fine spectral resolution. 
The solution of this incompatibility problem is to generate 
a large class of STFTs which employ different windows 
with distinct characteristics. Some members of this class 

This work is supported by Rome Lab, contract No. F30602-96- 
C-0077 

should be more appropriate to describe slowly time-vary- 
ing signals, while others are set to provide better localiza- 
tion in rapidly time-varying environments. For a given 
nonstationary signal, the member which yields the best 
temporal/spectral trade-off, or the highest possible con- 
centration should be chosen for t-f representation. Several 
concentration measures including those introduced in [I, 
2] can be used for this purpose. 

The application of STFT for interference excision in 
DS/SS communications using sparse grid and overdeter- 
mined time-frequency tilings was discussed in [3] and [4], 
respectively. Other techniques for the suppression of non- 
stationary interference include (l)adaptive linear predic- 
tions to track and remove the time-varying frequency 
characteristics of the coherent interference [5], (2)linear 
excisions in which the data is processed using the wavelet 
transform or M-band/subband filter banks [6,7], (3)bilin- 
ear transformations using time-frequency distributions for 
instantaneous frequency estimation, followed by time- 
domain excision filtering [8,9]. 

In this paper, we extend the application of the short 
time Fourier transform to nonstationary interference miti- 
gation in DS/SS communications. We apply a simple, but 
effective concentration measure to a computationally effi- 
cient class of STFTs in order to select the data-dependent 
STFT which provides the most improved localization of 
the interference in the time-frequency domain. Specifi- 
cally, we consider the generation of a class of different 
short-time Fourier transforms by using a multiple pole 
infinite impulse response filter, realized in cascading form. 
Members of this class have sufficient diversity in their 
temporal/spectral trade-off and are easily updated in time. 
Further, the STFT using an impulse response of one filter 
can be recursively generated from those members corre- 
sponding to smaller filler orders or pole multiplicities. The 
choice of the optimum window (impulse response) can be 
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made using localization test criteria such as the one dis- 
cussed in [2], Interference excision is then performed by 
either clipping or gating the high power values of the opti- 
mum window STFT. The process is repeated for each bit 
or block of data and the choice of the window could then 
vary with time. 

Section II presents the multiple pole windows and dis- 
cusses the difference in their temporal/spectral localization 
properties. The time- and transform- domain generations 
of the decision variable for detection are given in Section 
ID. The scheme for the proposed adaptive STFT method 
for jammer excisions is given in Section IV. Computer 
simulations showing the BER for both adaptive and fixed 
window STFT-based interference excision in DS/SS com- 
munication aire presented in Section V. . 

II. Order Recursive Short Time Fourier 
Transform(ORFT) 

For the short-time Fourier transform, the analysis 
window A(n) can be set equal to an impulse response of a 
linear time-invariant filler. If the filter is only made up of a 
multiple-pole of multiplicity *, then the transfer function 
of h{n) is given by 

Hk(z) = (1-7) 
-!  * 

(1-TZ   ) 
(1) 

(2) 

The corresponding impulse response is given by 

M") - (I-T)   „.(*_,)! T 

It can be readily shown that the above sequence possesses 
the recursive property} 10] 

M") = 7A,(n-l)+(l-r)fc,*_„(n) 0) 
Using the impulse response (2) as the analysis window in 
STFT yields a similar recursive expression to (4), 

Fk+,(n,w) = yr»+l(n-l,u>) + (l-7)fi(''.«o) W 

where Fk(n, u>) denotes the STFT which corresponds to 
the filter order *, calculated at time n and frequency w. 
Equation (4) defines the order recursive Fourier trans- 
form(ORFT).'" which the FT is recursive in both time n 
and filter order *. The block diagram of ORFT consisting 
of systems connected in cascade is depicted in Fig.l. The 
STFTs   Fk{n, w),   *=1,2 K   offer   different   trade-off 
between temporal and spectral resolutions. The trade-off is 
decided by the two variables in the problem, the filter pole 
and its multiplicity. Fig.2 shows the windows correspond- 
ing to * =1,5,10, T = 0.9 . It is evident that higher values 
of the filter order lead to longer extent windows, and sub- 
sequently, finer spectral resolution. 

III. Decision Variable in the Transform 
Domain 

The signal-to-jammer ratio (SIR) can be improved 
by eliminating the time and frequency samples of the 
STFT corresponding to the interference, and then synthe- 
sizing the result. The synthesized signal 5(n) is used to 
obtain the decision variable g for improved detection, 
through the correlation 

N-l 

'   g =  £ i(n)p*(n) (5) 
■ »0 

In the above equation, p(n) represents the receiver PN 
sequence and N is the number of chips per information 
bit(we assume one sample/chip). The short-time Fourier 
transform(STFT) is defined as 

X(f. /) = />»-(»- tWt)f'"^A (6) 

where w(/) is the analysis window and x(t) is the 
received(original) signal. Let T denote the time-period 
over which >»-(/) is significant, and F represent the effec- 
tive window bandwidth. According to [ 11], there is no sig- 
nificant information lost if the short-time Fourier 
transform X(f, /) is sampled at the two Nyquist periods 
\/F and 1/7, leading to 

r-l 
Xam = X(m/T,n/F) =   £ w{nD-k)x(k)e 

■jlxlm/T 
(7) 

where n and m are integer numbers and D = l/F. The 
above expression is obtained using the minimum sampling 
rale in both the lime and frequency domains. For the over- 
sampled STFT, 

-./»»» 
(8) Xm(e    ') =   ^,w(,m-n)x(n)c 

n = 0 

where L2N. In this case, the signal synthesis from the 
STFT can be simply performed using ihe overlap addi- 
tion(OLA) method described in [12J, 

i-i 

*»> = I £*.<«")'    =XvJ«) (9) 

where ym{n) is the inverse discrete Fourier transform at 

the time sample m, 
yj») = Lx(n)w(m-n) (10) 

From (9) and (10), 

y(n) = 2>„,(n) = ^<")2>(m-n) (") 
m m 

It can be readily shown that if w{n) is sampled at suffi- 
ciently dense rate, then[ 12] 

Jiw{m-n)=W(ei0),     y(n) = Lx^W^0)    (12) 
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It is clear from (12) that without modifying the STFT, the- 
synthesized signal is the same as the original signal, 

*(") = _   y{")   _ l JO,    ;«o,ii -zz *».<<>' (13) 

The decision variable at the output of the correlator (5) can 
be expressed using transform domain variables. By substi- 
tuting (13) in (5), we obtain 

/(Ok      4 

where P(e ) is the discrete Fourier transform of the PN 
sequence. Since all the functions in (14) are in the trans- 
form domain, then the detection can be performed without 
the need to apply inverse transformations. 

If the excision function am(*) is applied to the 
STFT, then the synthesized signal is modified to 

In this case, 
L-I 

(15) 

g 
1 

The scheme to perform the correlation in the time 
domain and the transform domain, respectively given by 
(5) and (16), is depicted in Fig.3(a),(b). The STFT domain 
detection scheme allows computational saving in two 
ways. First, the lime domain correlation requires m 
inverse DFT to be performed, whereas only one DPT oper- 
ation is required for the PN sequence in (16). Second, if 
the PN sequence is repetitive, its DFT remains fixed for 
every bit, which in tum reduces on-line computations in 
the correlation scheme of Fig.3(b). 

IV. Adaptive STFT method for jammer exci- 
sion in DS/SS 

The main objective of adaptive STFT is to decide, 
without human intervention and extensive prior knowl- 
edge of the underlying signal characteristics, on the analy- 
sis window which offers the best time-frequency 
resolution! 13]. Procedures based on mathematical optimal 
criteria appears most promising. Renyi information of the 
third order has been shown to provide a valuable and 
effective information measure in the context of time-fre- 
quency distributions^], 

c* = -^ZZ,°gI;r*(''.u»l3 (17) 
H    to 

It is recognized that the value of C, corresponding to the 

highest resolution t-f signal representation should be larger 
than others. As such, we proceed to calculate Ct for all 

members of the proposed class of STFTs and examine its 
value as a function of *. The filter order of maximum con- 
centration measure is determined and the respective STFT 
is chosen as the most appropriate t-f representation. 

Fig.4 shows the block diagram of the proposed 
recursive STFT-based interference excision method in PN 
spread spectrum communications. The method is summa- 
rized in the following steps:<l>The maximum value of the 
filter order * is set a priori. We have found that K = 10 is 
appropriate for a PN sequence length of 64. <2>The 
STFTs corresponding to * = 1 is computed over the 
entire bit <3>The STFTs corresponding to * = 2,3...* 
are computed at the beginning of the bit and then recur- 
sively updated in time and order using equation (4). 
<4>The STFT of maximum concentration measure is cho- 
sen. <5>A binary excision is applied to the STFT in step 
<4> to remove the time-frequency samples with power 
exceeding a preset threshold. <6>Tbe result in step <5> 
and the transform of the PN sequence are correlated using 
equation (16) and detection is applied. 

V. Simulations 

In order to test the effectiveness of the proposed 
method, we choose a synthetic signal which contains 
impulse, sinusoid, and chirp components. The result of the 
new adaptive method is shown in Fig.5(a). For compari- 
son, the STFTs with fixed window lengths are shown in 
Fig.5(b,c,d). It is evident that different fixed windows are 
appropriate for different components of the signal. 

In Fig.6, the BER is generated for OdB SNR spread 
spectrum signal with N=64. Over each bit, the jammer 
randomly takes an impulse, a sinusoid, or a chirp wave- 
form. For comparison, we have also included the BER for 
the fixed windows corresponding to k= 1,5. It is clear from 
the BER curves that the proposed adaptive method leads to 
improved system performance. 

VI. Conclusion 

In this paper, the impulse.response of the multiple 
pole filter is employed as an analysis window in the calcu- 
lations of the STFT. By fixing the pole location, the STFT 
becomes parameterized by only the pole multiplicity. This 
parameter controls the temporal/spectral resolution and 
can be set to yield the optimum concentration for a given 
nonstationary environment. One major attraction of the 
impulse responses of the above filters is that the corre- 
sponding STFTs are inter-related and also recursive in 
time. This allows a simple generation of a large class of 
STFTs with different localization properties.We have pro- 
vided the detailed scheme to perform interference excision 
in PN spread spectrum communications based on recur- 
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sive STFTs. It is argued that it is much simpler for the 
receiver correlator to act on the STFTs of both the excised 
signal and the PN sequence than to deal with their time- 
domain representations. Computer simulations of the bit 
error rate were presented for both fixed and data-adaptive 
recursive STFTs. It was demonstrated that by applying the 
Renyi concentration measure to select the most appropri- 
ate STFT a significant improvement in the receiver perfor- 
mance can be achieved. 
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Abstract 

This paper presents an orthogonal subspace based 
technique for nonstationary interference excision in direct 
sequence spread spectrum (DSSS) communications. The 
interference is an FM signal, which is uniquely 
characterized by its instantaneous frequency (IF). In the 
proposed technique, the received data over one symbol 
period is partitioned into blocks. The data in each block 
is projected on the subspace orthogonal to the respective 
interference subspace, which is provided using the IF 
estimate. The results of the projection are then combined 
and correlated with the PN sequence at the receiver. The 
paper shows the receiver performance as a function of the 
number of blocks and the noise variance. It compares the 
proposed projection approach with the recently 
introduced notch filtering techniques for nonstationary 
interference excisions in DSSS. 

1.  Introduction 

In this paper, the problem of nonstationary interference 
rejection in DSSS systems is approached using projection- 
filtering techniques. Orthogonal projection methods 
currently in the literature are more applicable to stationary 
signals [1],[2]. However, for this work frequency 
modulated (FM) interfering signals with constant 
amplitude over a bit period are considered. These 
nonstationary signals are uniquely characterized by their 
instantaneous frequencies (IF), and referred to as constant 
modulus signals, and include the important class of 
polynomial phase signals. The FM signals are localizable 
in the time-frequency domain and confined to a small t-f 
region, whereas both the additive noise and the DSSS 
signal components of the received data cover the entire 
time-frequency (TF) plane. Their IF can be estimated 
using numerous methods, including time-frequency 
distributions [3],[4],[5]. 

Once the IF is estimated, the interference signal vector 
can be constructed and the basis vector of its respective 
one-dimensional subspace can easily be defined. Since 
the PN sequence is uniformly extended in all dimensions, 
removing the PN component along the interference 
subspace causes full jammer excision with minimum 
distortion of the desired signal. Interference removal is 
simply achieved by projecting the input data vector over 
one bit period on the subspace orthogonal to the 
interference subspace. A genera] framework of the above 
projection approach is developed by partitioning the input 
data vector over one symbol period into successive 
blocks, where the projection on the orthogonal subspace 
of the jammer signal is applied over each block 
separately. The results of the projections over all blocks 
are combined to reconstruct the jammer-free data symbol. 

Several approaches have been introduced for 
nonstationary interference rejections in DSSS. One 
important excision approach, which will be used for 
comparison, is also based on IF estimation [6]. In this 
approach, the IF information provided from the time- 
frequency plane is used to construct a time-varying 
excision notch filter which effectively removes the 
interference. The notch filtering excision techniques, 
although relatively simple, cause significant distortions to 
the desired signal leading to undesired receiver 
performance, specifically under low jammer-to-noise ratio 
(JNR). In section 4, simulations are presented that show 
the performance of the proposed excision technique 
evaluated against the five coefficient notch filter approach 
introduced in [7J. 

The general expression of the receiver SNR is derived 
and shown to depend on the noise variance, the PN 
sequence length, and the number of blocks per symbol. 
The tradeoff between receiver performance and 
complexity is demonstrated by presenting the 
computational requirements as a function of the block 
length. 

1 This work is supported by the Air Force Research Laboratoiy, / IFGC, Rome, NY, contract no. F30602-96-C-0077 
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2. Notation 

The subject system utilizes a direct sequence spread 
spectrum signal with BPSK modulation 

'(O = E',i>,('09('-'Ti-«*c).      h 6{-l,l}Vi (1) 
i       n=l _, 

*iMi) 
where /,- is the information sequence (represented by sign 
in this binary case) and the expression in horizontal 
brackets amounts to the i* bit as a length L pseudonoise 
sequence pulse shaped by q. Tb is the bit interval and fc 

is the chip duration in seconds. Block processing over 
individual bits is the focus of this work so it suffices to 
drop the i subscripts and model the received signal as a 
discrete sequence in which a particular bit after 
demodulation and sampling at the chip rate is considered, 
without loss of generality, as 

x{n) = p{n) + w(n) + j(n),   i<n<L (2) 
where receiver hardware and propagation have induced 
noise w{n) and interference j(n) respectively. The noise 
statistics assume autoindependence, zero mean, and no 
cross correlation to the jammer. In vector form, (2) 
becomes 

x=p+w+j (3) 

where X=[I(1),J(2) x(L)f,  p=[p(l)„p(2) J>(L)]r, 
w=[w(l), w(2) w(L)f, and j=[/(l),J(2), ...,j(L)]T. 

3. Interference Suppression Using 
Orthogonal Projection 

The orthogonal projection method is based on the fact that 
a monocomponent jammer with a clearly detectable 
instantaneous frequency law forms a single-dimensional 
subspace in the L-dimensional space of the received data 
vector. Forming the (L-l)-dimensional : subspace 
orthogonal to the interfering signal allows a projection of 
the received signal into this interference-free space as per 
Figure 1. Even if the input data of L samples over one bit 
period is partitioned into K blocks xk of N samples each 
i.e. L = NK, the jammer remains an FM signal with one- 
dimensional subspace of each block's vector space. The 
interference can then be removed from the individual 
blocks by projecting the received data in the respective 
block on the corresponding orthogonal subspace. The 
instantaneous frequency (IF) information provided by any 
appropriate algorithm determines the jammer signal, and 
hence the orthogonal jammer-free subspace. 

To formalize this concept, let u4 be the basis vector for 
the interference subspace of the ** block (which has been 
estimated from the IF information,) and define the NxN 
projection matrix 

X=p+VH-J 

Jammer-tree 
signal 

Subspace>t)fthooonal 
to jammer 

Figure 1. Interference Excision Using Orthogonal Projection. 

V4=I-u4«I (4) 
The result of the projection in the k* data block is 

xk=\kxk (5) 

Using the three different components that make up the 
input vector (3), the output of the projection filter can be 
written as 

S^Vjp.+v^+jj] (6) 

It is assumed that the IF estimator provides exact 
parameterization of the jammer so that projection in this 
fashion annihilates the interference perfectly, i.e. 
\k3k = 0. Thus, 

=    P*+w* 
Correlating the filter output xk with the corresponding k 
block of the receiver PN sequence and summing the 
results over the K blocks yields the decision variable y, as 
in 

(7) 

jf=i 

y=2Xp* (8) 
*=o 

In terms of the constituent signals, the decision variable 
becomes 

y = pIvi
r
Pi+w[vJk

Twt (9) 

where 

i=0 i=l /=l 

is the contribution of the PN sequence to the received 
signal decision variable, and 

h = lii^ + m)vmi(/)HW + B)     (11) 

the contribution of the noise. In the absence of the 
projection filter, y, is constant and equal to L. However, 
application of Vt induces randomness on yit and yj is 
clearly a random  variable.     Therefore the statistical 
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expectations of each must be studied, along with cross- 
statistics, so that received signal, noise and interference 
energies (or ratios to be precise) may be developed. We 
are ultimately looking for two important statistics, E{y} 

and £{y2}. Using the properties and the structure of the 

projection matrix, it can be shown that 

E{y>}=I,Tr(Vk) = K(N-l) 

and since E{y2}=0, the noise term does not contribute 

to the mean of the decision variable. Neither is there a 
cross correlation, i.e. E{yty2}=0, of the noise and the 

pseudo noise sequences. Therefore 
E{y]=L-K (13) 

from Eq (12). It can also be shown that 

E{yf} - £{l>(V*) ■I>(V,)+2|V15 -2i|va(*)|2] 

(14) 
where Tr() is the matrix trace and \VkfF denotes the 

Frobenius norm of the matrix V4. It is easy to show that 

\VkfF is equal to (N - J). The third term in the equation 

is equal to 2 {N-lf 
N 

and for N»l, it approximates to 

(W-2).    Accordingly, using the above information with 
(12) yields 

.(W-l)2 

so that 

E{yf]=K2{N-l?+2K(N-l)-2K^—2- (15) 

var{y,} = £{y2}-£2{Vl} 

= 2K(N-1)-2K 
(N-l)2 

N 
(16) 

Now, due to the whiteness properties of the white noise 
and PN sequences, and the fact that they are uncorrelated, 
the reader may verify that 

E{yl}=°2lM2F=°2K(N-n     (i7) 
1_A 1=0 

Since E{y2} = 0, var{y2} = £ jy2], so that 

var{y} = var{y,} + var{y2} 

-iL-K^l] (18) 

Thus the signal to interference noise ratio (SINR) at the 
receiver, defined statistically as the received signal power, 
E {y), normalized by the variance, is given by 

SINR=nyi=LZK 
var{y}    a2+J/N 

= ^P-      TOTN»\ 

(19) 

This shows the intuitively pleasing result that, in the 
approximate sense, the receiver SINR decreases linearly 
with the number of blocks per bit, and reaches its 
maximum value when the excision is performed once over 
the entire bit period. It should be noticed that, by 
performing block wise excision, ones loses in two ways - 
by a decrease in mean and an increase in the variance of 
the decision variable. However, the computational 
advantages to block processing will provide an interesting 
tradeoff in a fielded system. 

4. Simulations 

Figure 2 shows a family of SINR curves vs. N, for 
different values of a2. As eq. (19) shows, increasing N 
(which decreases K) reduces the second term in the 
denominator, thereby increasing the SINR. This result is 
consistent with the fact that smaller block size means 
more blocks, each of which loses a dimension in the 
projection excision process thereby causing more of the 
PN sequence to be lost. It is also evident from Figure 2 
that the rate of increase in SINR vs. block length is more 
pronounced for higher noise levels because the 
denominator of eq. (19) is more dependent on the term 
YN than on the noise power when a2 is small («1). 

If the jammer is not present and preprocessing 
(projection/excision/filtering) is disabled the SINR 
expression reduces  to  the standard  result,   V,,  the 

matched filter bound. It represents the upper bound on 
performance when implementing interference excision 
techniques, including the proposed method. The lower 
bound on performance depends on the jammer power and 
the time-frequency signature. This bound is often reached 
when the excision projection filter is disabled, in which 
case Vjt =1. For a sinusoidal jammer of power p2, the 

lower bound on the receiver SINR is —= =- as in [81. 
oz + p2 

The upper and lower bounds for tone jammers are 
depicted in Figure 3. 

Figure 4 shows the receiver SINR vs. JSR for the case 
of a tone jammer when various excision techniques and 
parameters are employed, including the optimal adaptive 
notch filtering technique recently proposed in [7]. The 
projection method and the non-adaptive notch filtering 
method both are presumed to exactly annihilate 
interference,   decoupling   the   performance   of   these 
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strategies from the jammer power. Hence the horizontal 
lines in Figure 4. It is clear from the figure that the 
projection filtering technique, when /V=L=128, 
outperforms the optimum five-coefficient notch filtering 
and yields a 4.12 dB improvement over the case of full 
jammer excision with a notch filter. 
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Abstract 
This paper presents a subspace-based technique for nonstationary inter- 

ference excision in direct sequence spread spectrum (DSSS) communications. 
The interference is a frequency modulated (FM) signal which is uniquely char- 
acterized by its instantaneous frequency (IF). In the proposed technique, the 
received data over one symbol period is partitioned into blocks. The data in 
each block is projected on the subspace orthogonal to the respective interfer- 
ence subspace, which is provided using an IF estimate. The projected results 
are then combined and correlated with the PN sequence at the receiver. This 
paper examines the receiver performance as a function of the number of blocks 
and the noise variance. It applies the block-based processing to handle the 
cases in which errors arise in the IF estimate over segments of the bit pe- 
riod, due to changes in interference, noise and cross-term characteristics. This 
paper shows that the proposed projection approach outperforms the recently 
introduced notch filtering techniques for nonstationary interference excisions 
in DSSS. The paper also discusses the performance and computational com- 
plexity issues related to the data block size. 
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I. Introduction 

The primary motivation for using PN direct sequence spread spectrum (DSSS) commu- 

nication systems is its inherent capability of interference mitigation. Any level of interference 

can be effectively overcome with sufficiently long PN sequence. However, increasing the num- 

ber of chips per symbol period, which translates into higher processing gain, may lead to 

an increase in the spectrum bandwidth of the transmitted signal beyond available limits or 

intractable complexity for given requirements. This necessitates the use of efficient signal 

processing techniques in conjunction with a DSSS receiver to achieve acceptable interfer- 

ence rejection levels without intruding on adjacent communication channels [1], [2], [3] or 

decreasing quality of service. 

Several approaches have been introduced for nonstationary interference rejection in 

DSSS [4], [5], [6], [7], [8], [9]. One of the important excision approach, which will be used for 

comparison, is also based on IF estimation [9]. In this approach, the IF information provided 

from the time-frequency plane is used to construct a time-varying excision notch filter which 

effectively removes the interference. The notch filtering excision techniques, although rela- 

tively simple, cause significant distortions to the desired signal leading to undesired receiver 

performance, specifically under low jammer to noise ratio (JNR). 

In order to balance the effect of the excision filter on the DSSS signal, a modification 

of the receiver PN sequence was proposed in [10],[5],[11]. Amin [10] suggested to process the 

receiver PN sequence with the same excision filter prior to correlation. He also proposed in 

[5] to use a zero-phase five-coefficient filter so as to implement the equivalence of a matched 

filter applied to the output from a three-coefficient excision filter. Barbarossa and Scaglione 

[11] derived the optimum spreading sequence that maximizes the ratio between the output 
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and the input SNR's. They also proposed to use the Wigner-Hough transform to effectively 

estimate the jammer IF under high noise power levels. 

In this paper, a new and effective tool is introduced, not yet considered in the recently 

developed methods for the mitigation of nonstationary interference in DSSS systems. In- 

terference excision is performed using projection filtering techniques. Orthogonal projection 

methods currently in literature are more applicable to stationary signals [12],[13]. However, 

for this work frequency modulated (FM) interfering signals with constant amplitude over a 

bit period are considered. These nonstationary signals are uniquely characterized by their 

instantaneous frequencies (IF), and referred to as constant modulus signals, and include 

the important class of polynomial phase signals. The FM signals are localizable in the time- 

frequency domain and confined to a small t-f region, whereas both the additive noise and the 

DSSS signal components of the received data cover the entire time-frequency (TF) plane. 

Their IF can be estimated using various methods, including time-frequency distributions 

[14],[15],[16]. 

Once the IF is estimated, the interference signal vector can be constructed, up to 

ambiguity in phase and possibly in amplitude. The normalized basis vector the interfer- 

ence respective one-dimensional subspace can, therefore, be easily defined. Since the PN 

sequence is uniformly extended in all dimensions, removing the PN component along the 

interference subspaces causes full jammer excision with minimum distortion of the desired 

signal. Interference removal is simply achieved by projecting the input data vector over one 

bit period on the subspace orthogonal to the interference subspace. A general framework of 

the above projection approach is developed by partitioning the input data vector over one 

symbol period into successive blocks, where the projection on the orthogonal subspace of the 

jammer signal is applied over each block separately. The results of the projection over all 
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blocks are combined to reconstruct the jammer-free data symbol. Block-processing provides 

the flexibility to discard the portions of the data bit, over which there are significant errors 

in the IF estimates, although at the cost of increasing receiver noise variance. This trade off 

is explored and recommendations are put forth. 

In section II, the DSSS signal is presented along with the vector representations of the 

different components that make up the received data stream. In section III, the interference 

excision using orthogonal projection is introduced and the receiver SINR expression is de- 

veloped as a function of the block length and the noise power. Section IV deals with the 

case where errors in the IF estimates are induced due to the presence of cross terms, high 

noise power, and changes in jammer signal characteristics. It is shown that block processing 

becomes very effective when the IF errors only contaminate segments of the filtered DSSS 

signal, over the entire bit period. The simulation examples included in section IV illustrate 

the advantages of block processing in the case of significant IF errors. Appendix A highlights 

the computational requirements for the proposed approach. Appendix B gives the modified 

SINR expression when using blocks of unequal lengths. 

II. Received Data Structure 

A BPSK-modulated DSSS signal may be expressed as 

s(0 = £/,-6,(*-*n)        J,-G{-l,l}Vi (1) 

where /, represents the binary information sequence and T& is the bit interval. The i' binary 

information bit, &,•(*) is further decomposed as a superposition of L pseudo noise samples, 

Pi(n), pulse shaped by a unit-energy function, q(t), of duration of TC. 

bi(t)=EPi(n)q(t-nrc) (2) 
n=l 
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The shape of q(t) is determined by design requirements. The PN sequence is known to both 

the transmitter and the receiver, and it is assumed for this work that timing and synchro- 

nization are exact. A metric commonly referred to as processing gain, roughly equivalent 

to lOlogL, represents the improvement in SNR due to spreading/despreading of the desired 

signal at the transmitter/receiver. The communication channel adds both noise and interfer- 

ence to the DSSS signal, as shown in Fig.l. Since block processing over individual bits is the 

focus of this work, it suffices to drop the dependence on i and concentrate on any particular 

bit, assumed "+1" without loss of generality. The signal for one bit at the receiver, after 

demodulation, which strips off q(t), sampled at chip rate, becomes 

x(n)=p(n) + w(n)+j(n) l<n<L (3) 

where p(n) is the chip sequence, w(n) is the white noise, and j(n) is the interfering signal. 

It is assumed that the chip sequence and the white noise sequence are both temporally 

uncorrelated and of zero mean, and their cross correlation is zero. That is 

E{w{n)w{n + l)}   =   c*5(l), E{p(n)p{n + l)} = 6(1) 

E{p{n)w{n + l)}   =   0 V/ 

The above equation can be put in the vector form 

x = p + w+j (4) 

where 

x   =   [x(l)   *(2)   i(3)   -••   x(L)]   ,  P=[p(l)   p(2)   p(3)   -   p(L) ] 

w   =   [u,(l)   w(2)   w(Z)   -   w(L)]   , j=[i(l)   i(2)   j(3)   -  j(L) ] 

All vectors are of dimension L x 1, and 'T' denotes vector or matrix transposition. 
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III. Interference excision using Orthogonal Projection 

The signal space is generated by all linear combinations of all possible samples of the 

received signal vector x. As such, it contains L dimensions, due to the randomness of the 

p(n) and the white noise sequence. The jammer, assumed for this work to be a member of 

the general class of frequency modulated (FM) signals, is determined and constructed via 

estimates of the instantaneous frequency. It occupies a single dimension in the L-dimensional 

signal space. 

The orthogonal projection method makes use of the fact that an FM jammer has a 

one dimensional subspace in the the L-dimensional space of the received data vector. In 

the proposed interference excision approach, the data vector is partitioned into K blocks, 

each of length N, i.e. L = NK. In each block, the jammer remains an FM signal with 

one-dimensional subspace in an N-dimensional subspace. The interference can be removed 

from each block by projecting the received data in the respective block on the corresponding 

orthogonal subspace of the interfering signal as shown in Fig. 2. This subspace is estimated 

using the IF information. The projection matrix for the kth block is 

Vfc = I-Ujtu[ (5) 

The vector u* is the basis vector that span the subspace of the interfering signal. The result 

of the projection in the k<fc data block is 

x^VfcX* (6) 

where x* is the input data vector. Using the three different components that make up the 

input vector in (1), the output of the projection filter V* can be written as 

x* = Vfc[pA + wfc+jfc] (7) 
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Since we assume total interference excision through the projection operation, then 

Vjtji = 0, xJfe = VJbPi + VJtwJb = pJt-fwJt (8) 

The decision variable y is obtained by correlating the filter output x* with the corresponding 

kth block of the receiver PN sequence and summing the results over the K blocks. That is, 

y=E**p* (9) 
k=0 

The above variable can be written in terms of the constituent signals as 

y   =  PlVlpk+vtlVlpk = yi+y2 

fc=ot=ii=i 

y* = EEE^+^^iOp^+n) (io) 
1=0 m=l n=l 

where j/i and j/2 are the contributions of the PN and noise sequences to the decision variable, 

respectively. The mean value of the decision variable is given by 

E{y} = E{yi} + E{y2} (11) 

Without the pre-processing filter, y\ is constant and equal to L. However, by applying the 

projection operator V*, yi becomes a random variable with the mean value 

k=o t*=i i=i 

=       EEX>;.(*) E{p(kN + i) P(kN+j)} 
h=0t'=lj=l 

K-'l    N K-l 

=        E   E *«(*) = E  Tr{Vk) 
k=o t"=j'=i Jt=o 

=      KTr{^^-lN) = K(N-l) = L-K (12) 

where E[.J is the expectation operator, Trf.J is the matrix trace, and In is a identity matrix 
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of order N. If the block length increases to L, then the projection is performed only once over 

the entire bit period. In this case, K = 1 and E [yx] takes the maximum possible value L -1, 

which is approximately equal to the correlation obtained when the excision filter is disabled. 

From equation (12), one observation is in order. Because of the uniform energy distribution 

of the PN sequence over all basis vectors, the energy in the PN sequence over any block 

will always be reduced by one upon the removal of a one-dimensional jammer signal via the 

proposed method. Therefore, the total loss in the PN energy when successively applying the 

interference excision projection filters over K blocks, one at a time, is K, independent of 

the block length. From this perspective, interference suppression with minimum distortion 

of the PN sequence is achieved if excision is performed once over the entire bit period. 

The contribution of the noise term to the mean is zero, E{y2) = 0, as the PN and the 

noise sequences are uncorrelated. Since the cross-correlations, E{ym~) is zero due to the 

zero mean property of the noise, the mean square value of the decision variable is made up 

of only two terms, 

E{y2} = E{y\} + E{y\} (13) 

The first term in the mean square value of t/i, 

E{y\}   =   E{pT
kV

T
kPkp

T
kV

T
kPk} 

k=0t=lj=i 

J=0 m=l n=l 
K-\ N    N K-l   N     N 

Jfe=0 i=l i=l »=0 m=ln=l 

E{p{kN + i) p{kN + j) p{lN + m) p{lN + n)} 
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The above expectation is zero except for the following three cases: (i) i =j and m = n V/,fc 

(ii) m = i,j = n and k = I (iii) m = j,i = n and k = I. It should be noted that the terms 

that have the indices t = j = m = n are included in each of the summation terms under 

conditions (i), (ii) and (iii). Therefore, we must subtract twice the value of these terms from 

the summations. Equation (14) may be simplified to 

K-l K-\   N       N 

Jt=0  J=0 i=j=l m=n=l 

K-l     N N K-l N 

+ 2EE  £«*(*)«*•(*)-2E    E   MQvuik) 

=   EE [rr(Vfc)]tTr(V,)] +2 f) ||V*|&-2 E EKWf (15) 
jfe=0   i=0 Jt=0 Jfc=Ot"=l 

In the above equation, \\.\\p means the square of the FrobenJus norm of the matrix. It is easy 

to show that ||Vfc||]r is equal to (TV — 1). The inner summation in the third term is equal to 

(TV — 1)2//V and approximates to (N — 2) for N » 1. Accordingly, 

E{y\)   =   K7(N-lf + 2K(N-l)-2K (N~1)2 (16) 

From eqns. (12) and (16), the variance of j/i is 

o*n = var [yi] = —^ 1 = 2K(l--) = 2^-i 

which can approximated by 2K for N > 1. If the data record is not partitioned into blocks, 

and jammer excision is only performed once over the entire bit period, then N = L, K = 1, 

and the above equation simplifies to 

™r[yi] = 2(^) = 2(l-i)«2     i»l 

The mean square value of j/2 is 

E{yl)  =  ^wTvfowJVTp,} 
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= WEEX>(^+OM*0P(*^+;) 

E E Z>(w+mK»(0 p(lN+n)} 
1=0 m=l n=l 
tf-1 W   N K-l   N    N 

= EEEEEE<*(»K40 
i=0 t=l j=l 1=0 m=ln=l 

E{w{kN + i)p{kN+j)w{lN + m)p{lN + n)} (17) 

Due to the uncorrelation between the noise and the PN sequences and the whiteness property 

of both sequences, the above expectation is zero unless / = k, j = n and * = m, 

E{yl)  =  /EE   E **•(*) Vji(k) 
Jt=0 t"=m=l j=n=l 

=   ^ X:* HVJt|||. = cT2 AT (iV-l) = cr2(JL-/r) (18) 
it=o 

Since E{y2} = 0, then <r£ = E{yQ. From eqns.(15-18), 

=   2ir(l-^) + a2ür(Ar-l) = (L-if)[cr2 + |] (19) 

The receiver SINR is given by 

cINR   -    E*M -   L~K (20) 
bl"K   ~   var{y}~ a2 + 2/7V 

= £z£ /OTN»I 
a2 

The above equation shows that, in approximate sense, the receiver SINR increases linearly 

with the number of blocks per bit, and reaches its maximum value when the excision is 

performed once over the entire bit period. It should be noticed that, by performing block 

wise excision, we lose on both fronts, by a decrease in mean and an increase in the variance 

of the decision variable. However, as shown in Appendix A, increasingthe number of blocks 

269 



reduces the computational requirements necessary to carry out the proposed excision method. 

Figure 3 shows the SINR vs. N, for L = 128 and different values of a1. An increase 

in the value of N causes a decrease in the value of K, and subsequently reduces both the 

numerator and the second term in the denominator, thereby increasing the SINR. This result 

is consistent with the fact that with a smaller block size, more of the PN sequence is lost in 

the projection process. It is also evident from Fig. 3 that the rate of increase of SINR vs. 

block length is more pronounced for higher values of input SNR's. This is so because, for 

<T
2
 <C 1, the denominator of eq.(20) is more dependent on the term 2/N than on the noise 

power. 

If the jammer is not present, then with the projection preprocessing operation disabled, 

the SINR expression reduces to the standard result ^. This quantity is known as the 

matched filter bound [13], and it represents the upper bound on the receiver performance 

implementing interference excision techniques, including the proposed method. The lower 

bound on performance depends on the jammer power and its time-frequency signature. This 

bound is often reached when the excision projection filter is disabled, in which case the 

matrix V* becomes an identity matrix. For a sinusoidal jammer of power p2, the lower 

bound on the receiver SINR is L/(cr2 + p2) [17]. The upper and lower bounds for sinusoidal 

jammer are depicted in Fig. 4 

Figure 5. shows the receiver SINR vs JSR for the case of a sinusoidal jammer, using 

i) the proposed projection approach, ii) the full jammer excision notch filter approach [5], 

iii) the optimum five-coefficient excision notch filter approach, recently proposed in [9]. The 

first and the second approaches provide full interference excision and, therefore, their per- 

formances are independent of the jammer power, and shown in Fig. 5 as straight horizontal 

lines. We used block lengths of N = 2,4,8,128. It is evident from Fig. 5 that the projection 
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filtering technique for N = L = 128, outperforms the optimum five-coefficients notch filtering 

and yields a 4.12 dB improvement over the case of full jammer excision using the notch filter. 

Comparing the receiver SINR's of equation (20) and that of reference [9], it can be 

readily shown that the performance of the full excision five-coefficient notch filter [9], in the 

proposed projection approach, can be reached by using only a block size of three (N=3), 

which is evident in Fig. 5. 

In Appendix B, we consider the general case in which the block length may vary from 

one block to another. We re-derive eqns. (12-20) and show the "best" and the "worst" 

partitioning of the bit period from the receiver performance perspective. 

IV. Effect of IF errors on the projection operation 

Errors in estimating the IF can be divided into two types, namely, "resolution errors" 

and "estimation errors". Resolution «Tors arise due to the limited number of frequency bins 

used in the DFT. These errors have a uniform distribution over [-1/2M, 1/2M] for a DFT of 

M bins. On the other hand, estimation errors occur in situations, where it becomes difficult 

to ascertain the IF, due to noise, cross-terms or smart jamming techniques. In most cases, 

the frequency resolution errors are small when compared to the errors due to the estimation 

of IF. In the following analysis, we consider both sources of IF errors. 

Let the complex FM jammer vector be presented as 

uT=J_\ej*(i)   gj*(2)   .... gtfwl (21) 

where normalization by VT ensures unit energy. The estimated jammer signal is given by 

the normalized vector 

-T 1 jm   e^2>   ■••   I   ei'*(^+A*(*»   •••   eW(m)+A*<m»   |   •-•   eJ'^L> ] (22) 
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The above vector is assumed to be in error in the consecutive chips k- • • m. The IF estimation 

errors in the IF at different chips are assumed to be i.i.d random variables with a zero mean 

Gaussian distribution and variance o\. The projection matrix onto the subspace orthogonal 

to the estimated jammer vector is 

V = M = I-|üü
H

 = 

Vi v2 v3" 
v4 v5 v6 

v7 v8 v9 

v=v H (23) 

LxL 
Due to the assumed error structure, the projection matrix may be expressed using block 

matrices, V,-, i = 1, • • •, 9. The elements of matrix V are 

\   V, 
Vii   =-£—L    z^*>   l<*i'<(k-l) 

= 1=1       i = /j l<i,/<(fc-l) 
(24) 

_ k=l 
~   h 

vit   = 

i = l, k< i,l< m 

_ej[+(0-*(0)      •_>;      /       ,  i \ ^ •  i ^ r ——T    ifi,   (m + l) <i,l <L 

= ^ji i = l,   {m + l)<i,l<L 

vu   = .^O)-*(0-A*<O)    iV/>   i<£<(jb_i)>fc</<m} Va,Vf 

Vu   = -e>wo-W»    i^it   I<z<(*-1), (m + l)</<i} V3, V? 

»V»   k<i<m, (m + l)<l<L } V6, Vf   —e- _ej[*(0+A*(0-*(')l 
Vt7    = 

In the block projection matrix V, the errors in the IF vector spread into the blocks V2, V4, 

V5, V6 and V8. It should be noted that although all the elements of the matrix block V5 

are obtained from IF values that are all in error, the diagonal elements of the matrix are still 

error free. This is by virtue of the the complex conjugation product operation. 

Since there are errors in the IF estimates, the orthogonal projection technique proposed 

in section III does not entirely remove the interference signal. The contribution of the jammer 
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=   E [Pi    P?   Pz] 

Vf   Vf   V* 
vf vf vf 

rtf r»    v# 
(26) 

signal to the decision variable y can no longer be ignored. When the IF estimates are not 

equal to the exact values, then the decision variable is given by 

y   =   pHVHp + w*VHw+jHV*rj = y1 + y2 + y3 (25) 

where yi,y2 and y3 represent the contribution of the PN sequence, the white noise sequence 

and the interference signal, respectively. The mean value of the decision variable is 

E{y}  =  E{yi} = E{pHYHp} 
~~u- -,u -,w i r 

Pi 

p2 

p3 

where p1?p2 and p3 are the blocks of the PN vector of sizes k—1, m — k +1 and L — m, 

respectively, and p2 is the erroneous block. 

EM   =   £{pfV?pJ + £{prvfp3} + £{p?V?p2} 

=   T,r[V1] + rr[V9] + rr[V5] = L-l (27) 

It is evident from the above equation that the mean of the decision variable is not affected 

by the errors in the IF vector nor does it depend on the order and/or number of chips in 

error. The reason is that the error in the IF does not effect the diagonal elements of the 

projection matrix. The mean square value of the decision variable is given by the equation 

E{ |y|2} = E{(Vl + y2 + »s)(yj + y'2 + tf)} (28) 

The cross-correlation E{yiyj*} = 0,   i^ j, and 

£{|yi|
2}   =   E{yiy;} = £{p"V"pp"Vp} 

i=l j=l m=ln=l 

(29) 
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L    L    L     L 

=     1112Y!,.llE{P'iVjiPjPmV™P»} 
t'=lj=lm=ln=l 

t*=l j=\ m=l n=l 

Since the IF errors are random variables, independent of the PN sequence, the elements 

of the projection matrix below are also random variables. Using the properties of the PN 

sequence, eqn. (29) can be simplified to 

£{h/il2} =   £  £ E{v^vmm}+ £  x; E{v]iVji}-   £   Eiv^y 
t=j=l m=n=l t=n=l m=j=l i=y=m=n=l 

=   7V[V]Tr[V] +  £  IMß-      £      Sfe,} 
«V=n=l t=j=m=n=l 

=   (L-1)2 + (L-1)-^^ 

<£ = (L-v-{±:rt=tr (so) 
Again, the above equation shows that the contribution of the PN sequence to the variance 

of the decision variable is dependent only on the diagonal elements of the projection matrix, 

and hence is not affected by the errors in the IF. It can also be shown that the contribution 

of the white noise sequence to the variance of the decision variable is independent of the 

error variance and equal to that derived in section III, 

E{\y2\
2}   =   <r2y3 = E{y2y;} = a'\\VfF = c\L-l) (31) 

The contribution of the interference signal to the variance of the decision variable is not zero, 

and is given by 

E{\y*\2} = E{y3y;} = E{jHVHppHYj} = p*E{u»[l- üü"]pp"[I- ÜÜ» 

E{\yl\}   =  p2E{u"ppHu + uHüüHppHüüHu 
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-   u^üü^pp^u-u^pp^üü^u} (32) 

where p is the jammer power. It can be shown that uHu = j\{L — m + k — lJ + X^L*^^]- 

The value of the second term in eq. (32) 

£{u"üü*pp"üü"u} = ^3 E E EiKL -m + k-1) + fyA*W] 
L    i=l n=l l=k 

ü*Pinün[(L _m + fc-l) + f; c-'"A*M]} 
o=Jt 

^   t=n=l 1=* 

u?p««,-[(I -m + fc-l) + E c-'A*W]} 
o=fc 

■I 171 771 

=   ^{[(I-m + fc-l) + X;^'»]p-m + fc-l) + £e-^W]} 
i mm 

=   ^[(L-m + k-iy + iL-m + k-VE&^W + Y.e-^^} 
fcjfc o=* 

/=k o=Jt 

=   -^[(l-m + fc-l)2 + 2(L-m + Jb-l)(m-fc + l)e-^/2 

+   (Tn-Jk)(m-Jb+l)c"^+(m-fc + l)]. (33) 

The value of the third in eq. (32) is 

£{u"üü"pp"u} = 75 E £ £{p - m + fc -1) + f) e**«]^.«:} 
■^    i'=l n=l o=Jt 

=   TJ E ^{P - m + /: - 1) + E e*«° W»«i} 
^   t=n=l o=Jfe 

1      fc-1 m 

= 4-2 E £{[(£-m+*-i)+E^(0W.X} 
^    t=n=l c=* 

-(-     E £{[(1-m + fc-l) + f;c'*A*W]ti,-p«ti?} 
t'=n=Jfc o=fc 

+       E    ^[(i-m + fc-lJ + p'^.X} 
t=n=m+l o=A: 
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=   -I[(L - m + * - 1)E{[(L- m + * - 1) + f] e»"A*W]} 
L> 0=k 

+   £{^e-'A*W[(L-m + ifc-l) + ^cfA*W}]] 
«=Jfc 0=k 

=   -^[(I-m + fc-l)2 + 2(I-m + Jk-l)(m-Ä + l)e-^/2 

+   (m-Jfc)(m-Jfc + l)c-^ + (m-Jb + l)] (34) 

In the absence of IF error, i.e., cr^ = 0, eqn. (34) reduces to 1. The value of the fourth term 

can be similarly obtained. It should be noted that the second, third and the fourth terms 

have the same mean square value. This is due to the fact that the product of ppw gives rise 

to an Identity matrix in each of the terms, and üHü = 1. The variance due to the jammer 

signal is given by the expression 

<   =   E{\yl\} = £[L>-l(L-m + k-l)2 + 2(L-m + k-l)(m-k + l)e-<>y2 

+    (m-Jfc)(m-fc + l)e-ai + (m-Jfc + l)]] (35) 

which is a function of the jammer power, the error variance o\, and the number of samples 

in error, (m — k + J). In this case the receiver SINR is 

SINR=   2 f jy*   2 (36) 
VI    '       V2    '       V3 

If the IF estimates are equal to the exact values, a\ tends to zero, and o^ = 0, indicating 

full interference excision. In the case the error is spread over the entire bit, m = L, k — 1 

and eqn. (35)reduces to 

<   =   t-2\L2-\L{L-l)e-°V* + L]] (37) 

It is straightforward to show that when considering the frequency resolution errors, equations 
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(35) and (37) become, respectively, 

,2 
n*    -    p 

L^[{L-m+k-iy+^L-m+k-1){m-k+1)sine 

+    (m-k){m-k + 1)sin7e + (m-k + l)) 
c2 

r2     L{L-l)sin2c i 

(38) 

(39) 

where c is equal to 1/2M. 

For block processing, using K blocks, each of N samples, equations (27,30,31) for both 

resolution and estimation errors, become 

EM = K(N -1), o£ = K(N - 1) - #^2, <£ = *** (* -1) (40) 

The variance a2 , however, will depend on whether we deal with resolution or estimation 

errors. Providing that IF errors span only one block, a^ can be obtained simply by replacing 

L by N in (35-39). The main advantage of block-wise processing is that the block effected 

by the IF estimation error does not contaminate the desired signal in other blocks upon pro- 

jection. We note that if the decision is to remove the erroneous blocks, then the parameters 

in equation (40) become 

(iV-D2 

E{yi]   =   {K-q){N-l),*ll={K-q){N-l)-{K-q)^irt- 

<£    =   AK-q)(N-l) 

where q is the number of blocks in error. In this case, the receiver performance is given by 

SINR=L-K~Nq + q (41) 

Figure. 6 depicts the performance of the proposed projection excision filter for K = 1, for 

two different values of IF error variance. It is clear from the figure that the receiver SINR 

decreases with increased a\, and this behaviour is more pronounced at higher JSR. 

277 



Figure. 7 shows the receiver SINR with and without block processing. The errors 

in the IF were assumed to be entirely due to IF spreading. For low JSR's, the amount of 

power leaking through the projection filter (using a single block) is very small and hence the 

performance of the projection filter for K = 1 is better than block-wise projections. But, 

as the jammer power increases, the residual jammer power degrades the performance for a 

single block excision to the extent that i#t becomes inferior to block-wise excision . In this 

example L=128, K=8 and N=16. 

V. Conclusions 

This paper has presented a subspace-based approach for nonstationary interference 

excision in DSSS. In this approach, the interference is removed by projecting the data vector 

on the interference orthogonal subspace formed from the IF estimate. The projection may 

be performed once over the entire bit period or successively over blocks of the data in the 

bit period. A closed form expression was derived for the receiver SINR implementing the 

block-wise excision technique. The performance of the block-wise processing was compared 

to that of a single block projection receiver and was shown to be computationally efficient, 

with very small loss in performance. 

Two types of IF errors were considered, namely the errors due to the finite length DFT 

and those due to poor IF estimates over some or all data blocks. A closed form expression 

was derived to show the effect of each type of errors on the excision process. The receiver 

performance in the presence of IF errors was evaluated by calculating the jammer power 

escaping through the projection filter. The performance of the block-wise excision receiver 

was shown to be less sensitive to errors in IF. 
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Appendix A 

Computational Complexity 

Computational cost CN for processing a block of length N is given in table 1. 

The total computational cost C for processing one symbol will involve K additions, and is 

given by 

.     C   =   K{2IP + AN2 + 2N) + K 

=   K N{2N7+4N + 2) + K 

=   L{2N7 + 4N + 2) + K <A"2) 

which should be compared with L{2L* + 4L + 2) for the case when only one projection is 

performed over the entire data bit. If L = 256, K = 32,* = 8, then block processing requires 

0.122% of the computations required if only K = 1 is used. 
Table. 1 

Algorithm for Real PN sequence^ Computational Complexity 

Step Flops 

1-3*3 

V = uuH 

Xjk = V(n)Xit 

yjt = x? pjt 
Computational cost for processing block CN 

2N5 

2/V3 

2N2 

2N 

2/V3 + 4N2 + 2N 
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Appendix B 

Block wise interference excision with unequal Block Sizes 

As in the case of equal block sizes, the received data vector is divided into blocks. 

However, the size of the kth block is now N*, which is dependent on -the block number, k. 

The constraint on the block sizes is 

T*£Nk = L, Nfc^0 (B-l) 

The projection matrix for the kth block is 

Vfc = I-ufcur (B-2) 

The output of the projection operation is 

X*   =   VX = V4[Pt + wA+jfc] (B-3) 

The decision variable is 

if = Exrp*=£[p*+w£+tf]v*p* CB-4) 

t/i and xj2 represent the contribution of the PN sequence and the white noise sequence respec- 

tively, to the decision variable, while the interference signal is assumed to have be cancelled. 

The means of yi is 

= EEE^^WE^+iME^+i)}^^*] 
Jfc=0i=lj=l o=l a=l fc=l 

= E(Mk-l) (B-5) 
*=1 
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The mean of the variable y-i is 

E{y2}   =   %IVlpt} 

= ^{EEi:Mi:^+mKm(fc)p(i:^+n)}=o (B-6) 
J=0 m=l n=l      o=l o=l 

as the noise and the PN sequence are uncorrelated with each other. The variance of the 

decision variable is 

E{y2} = E{yl} + E{yl} (B-7) 

E{yft   =   E{plVT
kpkplVkpk} 

Jt=0 t"=l j=l      a=l . o=l 

K-l  Nt    N, I I 

£ E £ P(E *• + rnK(0p(E *.+»)>    _ .. (B-8) 
1=0 m=l n=l      o=l o=l 

The above expectation operation yields non-zero value only if (i) i = j and m = n (ii) 

k = lj = n and i — m (iii)fc = lj = m and » = n 

K-lJC-l   W*        W, K-l    Nk       Nk 

E{y\} = EE E  E vji(k)Vmn{i)+2 E E  E »*■(*>«*(*) 
fc=0  /=0 i=i=l m=n=l Jt=0 «=m=l j=n=l 

K-l W* 

-  2 £     £     «K(*K-(*) 
Jfe=0 «=m=j=n=l 

= ETr[v*]E^lv,]+2i;i|vfc||j.-2x:1El^(fc)l2 

t=o 1=0 ' Jt=o fc=o »=1 

K-l I2 K-l K-l K-l K-l tN  _ i\2 

+2EW-D-2EÜVL 

The contribution of the white noise to the variance of the decision variable is 

E(**-i) 
Lt=o 

E{y\}   =   E{wT
kV

T
kpkp

T
kVkvrk} 

= ^{EEE^E^+Ovi.WME^+i) 
Jt=Oi=lj=l       o=l 

k 

£ 
0=1 

(B-9) 
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J=0 m=ln=l       o=l o=l 

E{y\)   =   o*Y,{Nk-\) = o*{L-K) (B-10) 
feo 

It should be noted that the contribution of the white noise sequence to the variance of the 

decision variable has not changed, even if the block sizes are not equal. This is not the case 

with the variance of the variable t/i, which is dependent on the block sizes. The SINR of 

receiver is 

SINR  = 
(2+a8)E£*(JVik-l)--2E£i'«^ 

rr _ fi2 
(B-ll) 

(2 + ^)Ef=-o,(^-l)-2EJL-oli^i 

[L-Kf 

(2 + 0(I - K) - 2 [L - 2K + £*£ £] 

It can readily be shown [18] that the term Ekä»1 1/^jfc reaches its minimum value when 

TV*. = N, i.e., all blocks of equal length. In this case, SINR is minimum, implying the Worst 

case receiver performance. On the other hand, the above term takes a maximum value when 

one block is of length L - K + 1 and all other K — 1 blocks are of equal length, which is a 

unit sample. 
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Fig. 3.   The plot of the SINR (dB) vs. Block length for different values of input SNR(dB). 
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Abstract—This paper presents an orthogonal sub- 
space based technique for nonstationary interference exci- 
sion in direct sequence spread spectrum communications. 
The interference is a polynomial phase signal, which is 
uniquely characterized by its instantaneous frequency. In 
the proposed technique, the received data over one sym- 
bol period is partitioned into blocks. The data in each 
block is projected on the subspace orthogonal to the 
respective interference subspace. The projected results 
are then combined and correlated with the PN sequence 
at the receiver. The paper presents the analysis that 
shows the tradeoff between performance and computa- 
tional complexity as the data block size increases. 

I. Introduction 

The primary motivation for using PN direct se- 
quence spread spectrum (DSSS) communication systems 
is its inherent capability of interference mitigation. Any 
level of interference can be effectively overcome with suf- 
ficiently long PN sequences. However, increasing the 
number of chips per symbol period, which translates into 
higher processing gain, may lead to an increase in the 
spectrum bandwidth of the transmitted signal beyond 
available limits. This necessitates the use of signal pro- 
cessing techniques in conjunction with a DSSS receiver to 
achieve acceptable interference rejection levels without 
intruding on adjacent communication signal platforms. 

In this paper, we examine interference rejection in 
DSSS communications using signal processing projec- 
tion filtering techniques. Orthogonal projection meth- 
ods have been considered for the underlying problems 
in references[l],[2],[3],[4] . However, in this paper, we 
address different issues and focus on the class of polyno- 
mial phase interference signals. Members of this class 
are uniquely characterized by their instantaneous fre- 
quency (IF), which can be easily estimated using numer- 
ous techniques [5],[6] , including time-frequency distri- 

This work is supported by the Air Force Research Laboratory, 
Rome, NY, Contract #F30602-96-C-0077 

butions[7][8],[9],[10],[ll]. Once the IF is estimated, then 
the interference temporal waveform can be obtained up 
to an ambiguity in phase and amplitude. With this infor- 
mation, the interference is represented by an L- dimen- 
sional vector, where L is the number of chips/symbol. 
The interference respective subspace is one dimensional 
and can be easily constructed from the knowledge of 
its IF. For a multicomponent jammer with g different 
polynomial phase signals, atmost the jammer subspace 
is g-dimensional and can be obtained by estimating the 
component IF's. Since the PN sequence is uniformly ex- 
tended in all dimensions, removing the PN component 
along the interference subspace causes full jammer exci- 
sion with minimum distortion of the desired signal. This 
interference removal is simply achieved by projecting the 
data vector over each symbol period on the subspace or- 
thogonal to that of the interference. 

The interference orthogonal subspace is computed 
by applying the singular value decomposition (SVD) to 
the interference vector. The eigenvectors corresponding 
to the zero eigen values constitute the basis of the sub- 
space containing the jammer-free signal. In this respect, 
the key difference between the proposed excision method 
and others based on eigen analysis, is that in the pro- 
posed method, the SVD is performed on the estimated 
jammer waveform rather than on the data matrix or the 
correlation matrix. 

As the PN sequence length increases, the amount 
of its energy along the one-dimensional interference sub- 
space becomes smaller relative to its total energy. It 
is expected, therefore, that the rejection performance of 
proposed technique improves with more signal spreading, 
i.e., with higher processing gain. On the other hand, the 
computations required to perform SVD becomes consid- 
erably high and difficult to implement using real time 
signal processing, specifically for long PN sequences. Ac- 
cordingly, in the context of interference rejection using 
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subspace projection techniques, there is a clear trade- 
off between receiver performance and computational re- 
quirements. 

In this paper, we allow the user to tradeoff the 
above two competing requirements by partitioning the 
input data over each symbol into successive blocks. The 
projection filtering is applied over each block separately. 
The results of the projections over all blocks are com- 
bined to reconstruct the jammer-free spreaded data sym- 
bol. The despreading is obtained by the correlation.with 
the receiver PN sequence. The general expression of the 
receiver signal to interference and noise ratio (SINR) is 
derived and shown to depend on the noise variance, the 
PN sequence length as well as the number of blocks per 
symbol. The tradeoff between the receiver performance 
and complexity is demonstrated by presenting the com- 
putational requirements as a function of the block length. 

II. Interference excision 

The received data vector is the sum of the PN se- 
quence P, the white noise sequence W, and the interfer- 
ing signal J. The received data vector can represented 
as 

X = P + W + J 0) 
Let L denote the PN sequence length over one symbol 
period. The PN sequence is partitioned into K blocks, 
each of length N. The projected data vector over the kth 

block on the respective interference orthogonal subspace 
is given by 

xk = vkxk (2) 

The orthogonal projection matrix V* is of size NxN and 
is obtained as 

vk = vkvi (3) 

The columns of the N-by-(N - 1) matrix U are the or- 
thonormal basis vectors that span the subspace orthogo- 
nal to the interfering signal. The output of the projection 
filter is thus given by 

XfczrVtpPfc + Wfc + JjJ (4) 

The output of the projection filter over the kth block is 
correlated with the corresponding kth block of the re- 
ceiver PN sequence. The correlation yields the decision 
variable y 

x-i 

-TXP» (5) 
*=o 

The decision variable can be written in terms of the con- 
stituent signals as 

*=0 1=1 j=l 

K-\  N    N 

1=0 m=l n=l 

y =  yi+jfc (6) 

In the above equation, we assume total interference ex- 
cision. Therefore, the interference contribution to the 
decision variable is zero. The values j/i and jfe are the 
contributions of the PN sequence and white noise, re- 
spectively, to the decision variable y. 

III. Receiver SINR Analysis 

The analysis provided below is for a mono- 
component interference signal, but it can be easily ex- 
tended to the multicomponent case. The mean value of 
the decision variable is obtained by taking the expecta- 
tion of y in eq. 6. 

E{y) = E{yi} + E{y2} (7) 

X-l  N    N 

*=o1=1i=i 

vaik)p[kN+j)} 

=       £ EX>'(*) E{p(kN + i) p(kN+j)) 
*=o1=1i=i 

K-1    N K-l 

=       £ £««(*) = £rrace(Vt) 
*=o t=j=i *=o 

E{yi)   =K{N-1) (8) 

The contribution of the noise term to the mean is zero, 
as the PN and the noise sequences are uncorrelated with 
each other. 

£{!*} = <) (9) 

The variance of the decision variable is 

E{y,) = E{y*) + E{yi
2} + 

E{yiy2) + E{yi %} 

*<I?> = *<( ££!>(**+ •)• 
*=o i=ii=i 

/f-i if   N 

/=0 m=l n=l 
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vnm(l)p{lN + n))} 
K-l N   N K-l  N    N 

= EEEEEE^*)*»«- 
*=0 i=lj=l J=0 m=ln=l 

E{p{kN + i)p(kN+j) p(lN + m) • 

p[lN + n)} 

(10) 

The above expectation takes nonzero values only if 
(i) i = j and m = n {l^k and/ = Jt} 
(ii) l = k,i=m and j = n 
(iii) l = k,i = n and j = m 
It should be noted that the terms that have the in- 

dices i = j = m = n are included in each of the summa- 
tion terms in conditions (i), (ii) and (iii). The expected 
value of the mean square value of y is 

K-l K-l    N        N 

*{*>    =    EEEE  **(*) **(0 
*=0 1=0 i=7 = lm=n=l 

K-l     N N 

+2 E E E «».■(*) «*(*) 
A=0 i=m=l j"=n=l 

/f-1 N 

-2 E   E   v»w v»(*) 
tf-lK-1 

=     EElTrBCe(V*)]PW(Vi)] 
A=0 1=0 

+2 Ellv*l£-2EEM*)I2 (») 
*=0 Ar=0 i=l 

TnJce(Vt/) indicates the trace of the matrix Vk and is 
equal to K (N-l). \\Vk\\

2
F represents the Frobenius 

norm of Vk and is equal to K (N - 1). The fourth term 
in the equation is equal to K (N - 2) for N > 1. Ac- 
cordingly 

E{y\)   =   K2(N-1)2 + 2K 

the expectation of the mean square value of jfe is 

E{& =*{EEI>(iW+o 
A=0 «=1j=l 

K-l   W    W 

vw P(^+J) E E !>(/*+»») 
i=0 m=ln=l 

»nm(0MW + «)} 
K-l N   N K-l  N    N 

=   EEEEEEvW^-w 
*=0 t=l j=l 1=0 m=ln=l 

E{w{kN + i)p(kN+j) 

w(lN + m)p{lN + n)} (12) 

Due to the uncorrelation between the noise and the PN 
sequences, the above expected value is zero, unless i = /, 
j = n and i = m, 

EM) =*2E E E#)#) 
Ar=0 i'=m=l j"=n=l 

*=o 

From Eqs. (8)-(13) the variance of y can be written as 

Vai{y}=2K + <r2K{N-l) (14) 

The SINR of the receiver is given by 

var{yj 

K2 (N-l)2 

2K + a2K(N-l) 

It can be seen that the value of the SINR increases with 
increased values of TV. Smaller block sizes result in lower 
SINR, as more of the PN sequence is lost during the 
projection process. 

In the special case of no projection, the matrix V* 
becomes an identity matrix, and the SINR expression 
reduces to the standard result \ 

IV. Computational Complexity 

The total computational cost for processing the in- 
put data over a symbol period using the proposed tech- 
nique can be obtained as [12] 

K (10N3 + 7 N2 + 2N) + K 
=   L{WN3 + 7 N + 2) + K 

which is related to the square of the block size. Figure 1. 
shows the computation cost as a function of the block 
size. 

V. Simulations 

In this section we present computer simulations to 
show the effectiveness of the proposed orthogonal sub- 
space based projection filtering approach for interference 
excision as well as highlight the tradeoff between the 
performance and the computation complexity. Figure 2 
shows the receiver SINR for different block sizes. The ap- 
proximated values of SINR given by (15) are very close 
to the exact SINR values. 
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Fig. 1.  The Computational cost as a function of block size 
Fig. 2.  The SINR of the receiver as function of number of blocks 

Figures. 1 and 2 illustrate that the reduction in 
computational cost, with the use of smaller block sizes, 
comes at the expense of receiver the performance. This 
can be seen from the fact that small block sizes result in 
lower SINR. Therefore, the user can select the block size 
based on acceptable performance levels and processing 
times specific to his/her own application. 

VI. Conclusions 

This paper has presented a simple orthogonal sub- 
space based technique for nonstationary interference ex- 
cision in DSSS communications. Closed form expressions 
of the receiver SINR were derived. It was shown that the 
receiver performance deteriorates when excision is sepa- 
rately performed on successive data blocks rather than 
over the entire symbol period. The motivation behind 
segmenting the symbol interval to smaller length data 
blocks is to avoid a very high computational cost, which 
arises due to subspace estimation using SVD of large 
matrices. The effectiveness of the proposed technique in 
chirp-like interference was demonstrated by a simulation 
example. 
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ABSTRACT 

This papers presents the performance analysis of the in- 
terference excision techniques in direct sequence spread 
spectrum (DSSS) communications using orthogonal sub- 
space projections. It is shown that this technique is 
sensitive to the errors in the instantaneous frequency 
(IF) estimate of the interference over segments of the 
bit period. This paper discusses the effect of two differ- 
ent types of errors on the receiver SINR and compares 
the performance of the block-wise processing to the sin- 
gle block projection approach. 

1.  INTRODUCTION 

FM interference excision in DSSS using block-wise or- 
thogonal projection has been recently introduced [1]. 
This method uses the property that the FM signals 
are uniquely characterized by their instantaneous fre- 
quencies (IF) and that they are localizable to a small 
area in the time-frequency domain, while the received 
data and the white noise are spread over the entire t-f 
plane. The interference signal can be provided from the 
IF estimate to an ambiguity in phase and amplitude, 
by using the t-f distributions. Once the interference 
signal has been estimated, its excision can be achieved 
by projecting the received data onto the interference 
orthogonal subspace. The interference can be excised 
by performing the orthogonal projection once per bit 
period or over successive blocks within the bit period. 
It has been shown in [1] that the projection approach 
outperforms the notch filter approach introduced in [6], 
as it yields higher receiver peformance. 

The performance of the orthogonal projection meth- 
od depends on the accuracy in estimating the IF of the 
jammer signal. Errors in estimating IF occur as a re- 
sult of limited number of discrete frequency bins or due 
to the presence of large scale noise and absence of lo- 
calization in the t-f distribution. These errors lead to 

leakage of some of the jammer signal to the projec- 
tion filter output. This paper considers the effect of 
the IF errors on the receiver performance, with the re- 
ceiver SINR as a measure. Expressions are derived to 
calculate the amount of jammer leaking and the cor- 
responding receiver SINR. The performance of the re- 
ceiver implementing the block-wise excision technique 
is compared with that of the single block projection 
receiver. 

2.   RECEIVED DATA STRUCTURE 

The signal for one bit at the receiver, after demodula- 
tion, sampled at chip rate, becomes 

x(n) = p(n) + w(n) + j{n) 1 < n < L    (1) 

where p(n) is the chip sequence, w{n) is the white noise, 
and j(n) is the interfering signal. It is assumed that the 
chip sequence and the white noise sequence are both 
temporally uncorrelated and of zero mean, and their 
cross correlation is zero. The above equation can be 
put in the vector form 

x = p + w+j (2) 

All vectors are of dimension Lxl, and 'T' denotes 
vector or matrix transposition. 

3.  EFFECT OF IF ERRORS ON THE 
PROJECTION OPERATION 

Let the complex FM jammer vector be presented as 

VI1 e*#<a) P3*(L) } 

' This work is supported by the US Air Force Research Lab- 
oratory, Rome, NY, contract no. F30602-96-C-0077 

where normalization by vT ensures unit energy. Er- 
rors in estimating the IF can be divided into two types, 
namely, "resolution errors" and "spreading errors". Res- 
olution errors arise due to the limited number of fre- 
quency bins used in the DFT (This is the case for IF es- 
timation techniques based on Fourier transform). For a 
DFT of M bins, these errors have a uniform distribution 
over [-1/2M.1/2M]. On the other hand, the spreading 
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errors occur in situations, where it becomes difficult to 
ascertain the interference IF, due to noise, cross-terms 
or smart jamming techniques. These errors have Gaus- 
sian distributions. In most cases, the frequency resolu- 
tion errors are small when compared to the errors due 
to the spreading of IF. In the following analysis, we 
consider both sources of IF errors. 

The estimated jammer signal is given by the nor- 
malized vector 

ÜT   =    — [ ei*M   e'+W   ■■■   |   eJW'H^W) 
VL 
...    eiWrnHA^m))     j     ...     (J*W  1       (3) 

The above vector is assumed to be in error in the con- 
secutive chips k • • ■ m. The IF spreading errors in the IF 
at different chips are assumed to be i.i.d random vari- 
ables with a zero mean. The projection matrix onto the 
subspace orthogonal to the estimated jammer vector is 

V = [„,,]: I——UU      = 
1/ 

V» v2 v3 
v4 v5 v6 
v7 v8 v9 

v = v H 

(4) 
In the block projection matrix V, the errors in the IF 
vector spread into the blocks V2, V4, V5, V6 and Vg. 
It should be noted that although all the elements of 
the matrix block V5 are obtained from IF values that 
are all in error, the diagonal elements of the matrix are 
still error free. This is by virtue of the the complex 
conjugation product operation. 

Since the orthogonal projection technique does not 
entirely remove the interference signal, the contribution 
of the jammer signal to the decision variable y can no 
longer be ignored. The decision variable is given by 

pw VHp + w"Vffw + j*V*j y  = 

=   y\ + j/2 + j* (5) 

where yj ,y2 and 1/3 represent the contributions of the 
PN sequence, the white noise sequence, and the in- 
terference signal, respectively. The mean value of the 
decision variable is 

E{y)   =   E{yi) = E{[P?   p»   pf] 
V?   V?   V» 

V8 

1        "4 
V?    V? 

L   T3 'S 

Pi 
P2 

V?   J   L P3 ) 
(6) 

where pj ,p2 and p3 are the blocks of the PN vector of 
sizes k — l,m — k + l and L — m, respectively, and p2 

is the erroneous block. 

E{yi)   =   S{pfvfPl+p?V^p3 + p?vfp2} 

=   Tr[V1) + Tr[V9) + Tr[V5] = L-l   (7) 

It is evident from the above equation that the mean 
of the decision variable is not affected by the errors in 
the IF vector nor does it depend on the order and/or 
number of chips in error. The reason is that the er- 
ror in the IF does not effect the diagonal elements of 
the projection matrix. The mean square value of the 
decision variable is given by the equation 

E{\y?) = E{(yi + y2 + iftHyJ + y*2 + y*)} (8) 

The cross-correlation E{yiyj) = 0,   t 96 j, and 

E{\yi?)   =   Efayl) = £{p*V"pp"Vp}        (9) 

t=l j=l /=1 n=l 

L     L    L     L 

i=l j=l /=1 n=l 

= EEEE^v>'«}£WwW 
i=l i=l J=l n=l 

Because the IF errors are random variables, the ele- 
ments of the projection matrix are also random and 
are independent of the PN sequence. Using the prop- 
erties of the PN sequence, eqn. (9) can be simplified 
to 

ij = U,n=l 

22 £>{«>>,•,•}-  £ EivM 
»,n=llj=] ij,l,n=l 

= [Tr[V]]2+£||V|£-    £   EMM) 
t,n=l ij,ttnzil 

(L-l)2     L-\ <=(!-!)- (10) 

Again, the above equation shows that the contribu- 
tion of the PN sequence to the variance of the decision 
variable is dependent only on the diagonal elements of 
the projection matrix, and hence is not affected by the 
errors in the IF. It can also be shown that the contribu- 
tion of the white noise sequence to the variance of the 
decision variable is independent of the error variance, 

E{\y2?)   =   <£ = <r2||V||?, = <r2(L-l)   (11) 

The contribution of the interference signal to the vari- 
ance of the decision variable is not zero, and is given 
by 

E{\yz?)   =   £{j"v"pp*Vj} 
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=   p2£{u*[I-üüH]ppH[I-üü*]u} 

=   />2£{uHppHu + uÄüüHppHüüHu 

-   uHüüHpp"u - uHppHüüHu}   (12) 

where p is the jammer power. It can be shown that 
u*ü = l\(L - m + * - 1) + YT=k e,A*(0l- The value 
of the second term in eq. (12) 

^{u^üü^pp^üü^u} 

i=l n=l l=* 

üfanW -m + *-l) + £ e-S*M]} 

=    ±E{[{L-m + k-l) + J£t***m\. 
I=k 

[(X_ra + jfc_l) + £y'**<•>]} 
c=* 

=    -^[(L-n» + Jt-l)2 + 2(L-m + A-l). 

(m-Jt+l)e-"^2 + (m-fc). 

(m - k + l)e-'i + (m - A + 1)] (13) 

The value of the third term in eq. (12) is 

E{uHüüKppHu} 

i=l n=l 

= 121 E £«( J -m + *-l) + f; e*A*<o)]äiTO«?} 
s,n=l o=fc 

s,n=ik o=* 

+   X)    EiHL-m + k-V + jreiW'^üiPHul)) 
i",n=m+l ■>=* 

=    -^[(L-m + it-l)2 + 2(X-m+Jt-l). 

(m-k + I)e-"«/2 + (m - i)(m - Jk + lje""* 
+    (m-* + l)] (14) 

In the absence of IF error, the error variance, a\ = 0, 
eqn. (14) reduces to 1. The value of the fourth term 
can be similarly obtained. It should be noted that the 
second, third and the fourth terms have the same mean 
square value. This is due to the fact that the product 

of ppH gives rise to an Identity matrix in each of the 
terms, and ü ü = 1. The variance due to the jammer 
signal is given by the expression 

<   =£[L2-[{L-m + k-l)> (15) 

+     2(L-m + Jfc-l)(m-* + l)e-"272 

+     (m-*)(m-*+l)e-^ + (m-*+l)]] 

which is a function of the jammer power, the error vari- 
ance «rat and the number of samples in error, [m — k + 
1). In this case, the receiver SINR is 

SINRz= E'jy} 

Vi + <& + *; 
(16) 

Vi 

When the IF estimates equals to the exact values, v& 
tends to zero, oJs = 0, indicating full interference ex- 
cision. In the case when the error is spread over the 
entire bit, m = L and k = 1 and eqn. (15) reduces to 

<   =    ^[L2-[L(L-l)e-"'^ + L]\   (17) 

It is straightforward to show that when considering the 
frequency resolution errors, equations (15) and (17) be- 
come, respectively, 

«•2     _ ?-[L2-[{L-m + k-l)2 (18) 

2(L-m+k- l)(m -k + l)sint 

(m - k)(m - k + l)sin2e + (m-*+!)] 

<    =    g[^-[^-;)-2%X]] (19) 
where t is equal to 1/2M. For block processing, using 
K blocks, each of .Af. samples, equations (7,10,11) for 
both resolution and spreading errors, become 

N 
E{yi)   =   K(N-l),a2

yi = K(N-l)-K 

c2
V3    =   a7K(N-l) (20) 

The variance <r23, however will depend on whether we 
deal with resolution or spreading errors. Providing that 
IF errors span only one block, <r2s can be obtained by 
replacing L by N in (15-19). The main advantage of 
block-wise processing is that the block effected by the 
IF estimation error does not contaminate the desired 
signal in other blocks upon projection. 

4.  SIMULATIONS 
Figure. 1 depicts the performance of the proposed pro- 
jection excision filter for K = 1, for two different values 
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of IF error variance. It is clear from the figure that the 
receiver SINR decreases with increased a\, and this 
behaviour is more pronounced at higher JSR. 

Figure. 2 shows the receiver SINR with and without 
block processing. The errors in the IF were assumed 
to be entirely due to IF spreading. For low JSR's, the 
amount of power leaking through the projection filter 
(using a single block) is very small and hence the per- 
formance of the projection filter for K = 1 is better 
than block-wise projections. But, as the jammer power 
increases, the residual jammer power degrades the per- 
formance for a single block excision to the extent that 
it becomes inferior to block-wise excision . In this ex- 
ample L=128, K=8 and N=16. 
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Figure 1: Receiver SINR with different spreading er- 
rors. L = 128, K=l. The input SNR = OdB. 

5. CONCLUSIONS 
This paper has presented the performance analysis of 
the block-wise FM interference excision technique in 
DSSS. A closed form expression was derived for the 
case of the interference signal leaking through the pro- 
jection filter, due to the errors in the IF estimates. The 
performance of the block-wise projection receiver was 
compared to that of a single block receiver and was 
shown to be less sensitive to IF estimate errors. 
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High Spectra] Resolution 
Time-Frequency Distribution Kernels 

Moeness G. Amin and William J. Williams 

Abstract— A new class of lime-frequency distribution (TFD) kernels 
Is introduced. Members in this class satisfy the desirable TFD properlies 
and simultaneously provide local autocorrelation functions (LAF) that »re 
amenable to high-frequency resolution modeling techniques. It is shown 
that members of the proposed class are product kernels, fast implementa- 
tion multiplication-free kernels, recursive kernels, and optimum kernels 
with respect to autoterai localization. 

I. INTRODUCTION 

Time-frequency distributions (TFD's) along with their temporal 
and spectral resolutions are uniquely defined by the employed t-f 
kernels. Potential kernels seek to map, at every time sample, the 
time-varying signals in the data into approximately fixed frequency 
sinusoids in the local autocorrelation function (LAF). Applying the 
FT to the LAF, therefore, provides a peaky spectrum where the 
location of the peaks are indicative to the signals' instantaneous power 
concentrations. The sinusoidal components in the LAF, however, gen- 
erally appear with some type of amplitude modulations (AM), which 
are highly dependent on the kernel composition. Such modulation 
presents a limitation on spectral resolution in the /-/ plane, as it is 
likely to spread both the auto and crossterms to localizations over a 

wide a range of frequencies. 
Because of the kernel modulation effects on the various terms, 

closely spaced frequencies may not be resolved. Further, since 
TFD's are Fourier-based, then in addition to the amplitude modu- 
lation imposed by the kernels, the spectral resolution is limited by 
and highly dependent on the extent of LAF, i.e, the lag window 
employed. However, increasing the length of the LAF will hot 
always yield improved resolution. We maintain that events occurring 
over short periods of lime do not require large kernels, which 
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Fig. 2.   High-resolution exponential kernel, (a) o = 1. (b) o = 10. 

may only lead to increased crossterm contributions from distant 
events and obscure the local autoterms. Limited availability of 

data samples may also provide another reason for using small- 

extent kernels. In these cases, improving spectral resolution of a 
TFD can be achieved by parameterizing its local autocorrelation 
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Fig. 3. 
Binomial kernel (a) TFA. (b) High «solüüon spectrum, (c) Zero diagram. 

function via autoregressive (AR) modeling techniques [IH«) Such 
parameterization seeks lo fit a least-squares random model to the 
second-order statistics of the LAF at different time instants. The AR 
modeling techniques, however, view the LAF as a stationary process 
along the lag dimension. Since t-f distribution kernels translate 
deterministic signals into others of deterministic nature, it will be 
more appropriate to fit a deterministic, rather than a stochastic^ 
model to the LAF. Further, all modeling techniques applied in the 
TFD context thus far have only dealt with Pseudo W.gner-V, lie 
distribution (PWVD) or the smoofted PWVD (SPWVD) kernels. 
We maintain that in addition to PWVD and SPWVD of separable 
time and lag windows, there exists a large class of t-f kernels for 
which the LAF are amenable to high spectral resolution techniques. 
Members of this class not only yield LAFs that can be accurately 

parameterized but also satisfy the desirable t-f properties, including 
reduced interference. The high spectral resolution t-f kernels can be 
separable or inseparable kernels, product kernels, and computaLonally 
efficient kernels, as well as. optimum kernels in terms of autotenn 

localizations. .      . -    .   _ 
In this correspondence, we use Prony's method and its least- 

squares reduced-order approximation based on the singular value 
decomposition (SVD) 15], (6] in the t-f context This method is 
shown to be applicable to high spectral resolution TFD problems, 
specifically when the underlying LAF is made up of a sum of 
exponentially damped/undamped sinusoids or chirp-like »gnals We 
derive a class of TFD kernels in which the autoterms and the 
crossterms of the sinusoidal components in the data are, respectively, 
mapped into undamped and damped sinusoids. By using the backward 
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II. HIGH SPECTRAL RESOLUTION t-f KERNELS 

The ambiguity function of the data r(n) is given by 
linear prediction frequency estimation approach [5J, these two sets of 
components produce a linear predictor error filter whose zeros lie on 
and outside the unit circle, respectively. With the extraneous zeros 
of the polynomial lying inside the unit circle, fitting a deterministic 
model to the LAF of the proposed class of t-f kernels not only 
yields accurate estimates of the frequencies of the sinusoids but 
also provides a mechanism to distinguish between the true and false 
distribution terms. 

In Section 11, we introduce the high spectral resolution TFD kernels 
and state the requirements that permit the application of Prony's    when. ^ fe ^ comp]ex „„pijMde of üw Hh sinusoid. Then 
method to the corresponding local autocorrelation functions. This p 

application is constrained by the fact that the initial phase of all       D^g n _ V* TnV)+   Y*   Ti„{l) 
sinusoidal components in the LAF is either 0 or 180°. Computer £f   " ._", 
simulations are presented in Section HI. •*•»  ' 

r>(0, 1)=   £   Tin + l)r'{n-l)e~J7" 
■s-oe 

if the data a-(n) consist of p undamped sinusoids in the form 
r 

(1) 

(2) 

(3) 
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7;,</) = 2;r|.4.i|V'--'   £ W - *x) 

T.„.tl) = 2*A.A'm*>-•'--'   £   r(g-'•■"'"-,A     (4) 

The lerms in «he first summation correspond to the signals* 
auioierms and lie on the 6 = 0 axis. In the second summation, the 
crossierm J;«.(0 associated with each pair of sinusoids (-•,-. vm) is 
presented by > train of impulses that lie on a line parallel to the 
9 = 0 axis and with a distance defined by the frequency separation 
(-•, - -•».). The application of the t-f kernel, respectively, modulate 
the autoterms and the crossterms by o(0.1) and o[U\- - -W2). /]. 
The new local autocorrelation function is computed by taking the 

inverse FT of D{8.1). If the kernel satisfies the frequency marginal 
property, then o(0. /) — 1, and the LAF is given by 

r(0 = J2M«P <*""' + 2 ]T   Re(.4.-4r. r*"—"/J)") 
I. IM = 1 

.p££L^£z. .ij^-r—K     ,>0. (5) 

The first term is similar to the original data sequence x, except all 
sinusoids now appeal with zero phase. Since the LAF is Hermitian, 
the frequency information can be extracted from either of its sides. 
For the crossterms to be damped exponentially, we require 

°V   ' 2*"** V = '^m V'" "'*        ' ^ '" 
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Fig. 6.    PWD kernel, (a) TFD. (b) High-resolution spectrum, (c) Zero diagram. 

<f>(9,1) = ß'{9),       ß(9) < 1 for constant 9. (6) 

The two kernels shown in Figs. 1 and 2 

M9.l) = e~Wl/'.    <M*. /) = cos'V) (7) 

satisfy the above condition. The kernel 4>i " a product kerne] but 
does not satisfy the support property, whereas the second kernel £j 
is not a product kernel but satisfies the time-support property. It is 
noteworthy that fa is a computationally efficient kernel for which the 
LAF can be generated without any multiplication and is known as the 
binomial kernel [7]. The kernel ^i, on the other hand, has recently 
been shown to be optimum in terms of autoterm localization [8). 

It is easily shown that (6) is satisfied by all t-f kernels in the forms 

<5(0, 0 = ßm'w   /(0) = 0.    f(9) = ±f{-9). (8) 

The t-f kernels satisfying (6) along with all desired t-f properties 
form a class of high spectral resolution kernels. When 0 < 1, the 
proposed high-resolution (-/ kernels have lowpass filter character- 
istics in the ambiguity domain and, in turn, act on smoothing out 
the crossterms in the WVD. The Pseudo WVD kernel is obtained 
by setting ß = 1. In this case, all sinusoidal components become 
undamped, and a more suitable high-resolution technique can be 
used 16). It is important to note that several SPWVD kernels are also 
members of the proposed high spectral resolution class. All separable 
/-/ kernels in the form 

4>ie,l) = owf(9) (9) 
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Fig. 7.' Binomial TFD results for ;(n). 
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Fis. 8.    Hich-resoluiion binomial TFD for :(»)- 

damp the crossterms exponentially and. as such, are amenable lo Ihe 
data modeling (1). In [9] and [10], the kernel form (9) is recognized as 
a recursive t-f kernel for which the TFD can be recursively updated 
every data sample with a number, of compulations independent of the 
time extent of the kernel. 

Using the proposed class of kernels, we can proceed with Prony's 
high-resolution frequency estimation techniques. In the t-f context, 
the LAF sequence r(l). I = 1.2. 3. •••. .V replaces the input 
data sequence, whereas the rank <j of the backward data matrix 
now represents the sum of the autoierms and crossterms. i.e.. •/ = 
[p+j>(p-1 )/2j. According to [5), the zeros in the backward predictor 
error filler polynomial corresponding to the undamped auioterm sinu- 
soidal components lie on the unit circle, whereas those corresponding 
lo the damped CTOSSterm sinusoids are positioned outside the unit 
circle. These zeros are denoted by :,. ' = 1. 2. • • •. ■;. The remaining 

polynomial zeros are approximately uniformly distributed inside the 
unit circle. In general, the frequency estimates will appear with twice 
the true value, which is due to excluding the terms corresponding to 
odd lags from (I). This multiplicative factor can be eliminated by 
using nonaliasing techniques [11]. 

The power of the sinusoids in the data can be obtained using least 
squares Prony's method [6]. Let Z define the Vandermonde matrix of 
dimension .Vj-r/, where the ijth element is given by i,-y = -}"'• The 
•y-dimensional vector b includes the different powers in (5). Vector 
c is of length .V and includes the autocorrelation sequence T{(). Tbe 
unknown vector b is obtained by least square solution of Zb = c 
[6]. In order to incorporate the fact that in the underlying problem, 
the initial phase of all sinusoidal components in the LAF at r(0) is 
eiiher zero or 180°, the least-squares solution should be constrained 
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Fig. 9.    High-resolution TFD for r<») using the raw LAF values (PWD equivalent). 

and modified as 

||Zb - c||2.        subject to b = b". (10) 

By using the method of Lagrange multipliers, we define 

e(A. b) = ||Zb-c|ß + A'(b-b') 

= (bHz"Zb - bHZHc - c"Zb + c"c) 

+ A'(b-b'). <U> 

Differentiating with respect to b and b*. we obtain 

(Z"Z)-b- + A=(Z"c)\     (Z"Z)b-A = z"c. (12) 

By adding (11) and (12) and satisfying the hard constraint b = b\ 
we obtain the real least-squares optimum sinusoidal amplitude vector 

b= (Re(Z"Z)-,Re(Zc)]. (13) 

111. SIMULATIONS 

The data samples x.{n), which consist of two sinusoids 

x(ii) = «p(j<jr/4)n)+«p<j(9T/32)i»).     » = 1-2.---.-V    (14) 

are analyzed by the high spectral resolution binomial kernel or 
dimension 32 x 32 and 128 x 128. -V is the data record length and is 
set equal to 256. Conforming lo the simulation results given in |!2J. 
Fig. 3(a) shows the corresponding binomial TFD computed at one 
time instant in the middle of the data record. The small extent kernel 
provides poor resolution, whereas the large extent kernel resolves the 
two sinusoids and the crossterm. Due to missing even autocorrelation 
lags, these sinusoids appear at twice their frequencies. Because of 
the presence of three sinusoids (two of them are undamped and one 
is damped), the singular values of the data matrix will have three 
nonzero values. Applying the reduced-rank Prony's method using 
an eighth-order prediction filter and the smaller kernel, i.e, a 16- 
lag LAF. we obtain the polynomial roots of Fig. 3(b). ll is clear 
that the two autoieim components are presented by two zeros on 
the unit circle. Because of the exponential modulation caused by the 
binomial kernel, the crossterm zero shows a divergence from the unit 
circle. All extraneous zeros are approximately uniformly distributed 
inside the unit circle. The damping effect on the crossterm becomes 

more evident in the corresponding high-frequency resolution spec- 
trum presented in Section 11 and shown in F.g. 3(c). This spectrum 
is computed via 1024-point FFT with L = 10. Fig. 3(c) shows 
only two dominant spectral lines that correspond to the autolerm 
components. The TFD, the zero diagram, and the high-resolution 
spectrum corresponding to PWVD using ihe same data matrix as in 
the binomial TFD are depicted in Fig. 4<a)-<c). Due to ihe equal 
weighing of the autoterms and crossierms by the PWVD kernel, 
the crossterm sinusoid, in this case, is undamped and subsequent!) 
persists in the spectrum. 

To further illustrate ihe point, we choose Iwo widely spaced 
sinusoids in additive noise. The SNR is 20 dB. The two normalized 
frequencies are (5/16) and (15/32). The TFD. ihe zeros of iho 
backward error predictor filler polynomial of order 8 (I = S). and the 
corresponding high-frequency spectrum, are depicted in Figs. 5 and 6. 
for Ihe binomial and PWVD TFD\s. respectively. Since Ihe damping 
factor of the crossterm using the binomial kernel is proportional to ihe 
frequency separation, ihe crossterm zero appears farther away from 
the unit circle than the case in Fig. 3(b). 

The following simulations illustrate Ihe effectiveness of ihe high- 
resolution TFD"s. A test signal was constructed lhat consisted of luv 
complex exponentials as 

j-t«) = ,-X1>(J2T12.S»/12S).    »(») = ••x|>(j'2a-J1.2»/12SJ 

» = 0. 1.2. ••■. 127. «I-45 

Then 

_-(l,) = ff(ii) + .r<» -30). (16 

These two signals have normalized frequencies of 0.1 and 0.4 Hz 
respectively. First, the binomial TFD was computed using the alias 
Tree formulation [11] for comparison. The LAF, which extended to = 
128 points, was computed, and the binomial kernel was applied lo r 
Applying an FFT across the lags produced the result shown in Re." 
The two components aie well resolved, and the crossterm interferenc 
is low. Fig. 8 shows the high-resolution TFD result using the binomir 
kernel. Only even lag terms were used in the LAF. We can see thai th 
results are similar to ihe binomial TFD. but the resolution is high«- 
In addition, the crossierms are small and generally fall between th 
autoterms and are not spread, as is the case for the binomial TF1 
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Fig. 10.    High-resolution result for a complex exponential signal over 128 time samples (sampling rale assumed to be I/s). The starting frequency was 
0.0S Hz, and the chirp rate was 0.06 Hz/sample. 

Fig. 9 shows the results obtained using the raw LAF values, which 
is equivalent to the PWD. The autoterms are well resolved, but the 
crossterms are as large as in the conventional PWD and fall between 
the crossterms. A 20-poinl analysis window was used lo find the 
Hankel structure for the odd positive lags obtained from the same 
LAF used lo form the binomial TFD. The number of terms included 
from the SVD computation were limited by excluding all terms with 
magnitudes less than 15% of the largest singular value. 

The effectiveness of the approach with a nonslationary chirp 
is shown in Fig. 10. Here, a complex exponential with a starting 
frequency of 0.05 Hz and a positive chirp rate of 0.6 x \V* 
Hz/sample is analyzed using the alias-free binomial LAF. Here, 0.1 
Hz spans 100 frequency samples. We can see that the method provides 
a very nice estimate of the *-/ course of the signal. The granularity 
is due lo the choice of 100 frequency samples/0.1 Hz. The granularity 
could be decreased by choosing a larger number of frequency samples 
over the presentation range. 

rv. CONCLUSIONS 

A new class of time-frequency distribution kernels is introduced. 
The members of this class satisfy the desirable time-frequency 
properties for power localization in nonslationary environment, yet 
they produce local autocorrelation functions that are amenable to 
exponential deterministic modeling during periods of stationarity. The 
proposed high spectral resolution kernels are required to meet two 
basic conditions: 1) the frequency marginal and 2) an exponential 
behavior in the ambiguity domain for constant values of 9. In dealing 
with sinusoidal data, the first property guarantees that the autoterm 
sinusoids in the LAF are undamped. The second property enforces 
an exponential damping on all crossterms. As a result, the sinusoidal 
components in the data translate into damped/undamped sinusoids in 

the local autocorrelation function. High-resolution techniques such as 
reduced rank approximation of the backward linear prediction data 
matrix can then be applied for frequency estimation. AH simulations 
are presented using noise-free signals. The effect of the noise on the 
performance of the proposed class of kernels is briefly discussed in 
(13J. 
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Method for Defining a Class of Fractional Operations 

Peter Kraniauskas, Gianfranco Cariolaro, and Tomaso Erseghe 

/lijrnier—The fractional Fourier Iransform permits a variety of asso- 
ciated fractional operations. This correspondence proposes a systematic 
method, based on the structure of the FRT, which not only provides 
unambiguous «tensions of ordinary operations but permits writing the 
applicable expressions simply by inspection. The approach also exposes 
the possible paths for implementing such operations. 

Index Terms—Fourier transform, fractional convolution theorem, frac- 
• tional Fourier transform, fractional operations. 

I. INTRODUCTION 

The fractional Fourier transform (FRT) is effectively an exten- 
sion of the ordinary Fourier transform (FT) with suitably extended 
properties. Since its inception, various attempts have been made to 
define certain fractional operations as counterparts to corresponding 
ordinary operations encountered in Fourier methods. However, the 
structure of the FRT lends itself to various, nonequivalenl extensions 
of any given operation, which can lead to confusion. 

This correspondence proposes a systematic method for defining 

fractional operations that exploits the relevant properties of the 
ordinary FT embedded in the FRT definition. This strategy not only 
permits writing the applicable expressions for both the reference 
domain (fraction a = 0) and the fractional domain a merely by 
inspection but also provides possible implementation paths with the 
relevant expressions. No elaborate derivations are required as the 
burden of proof is carried by the ordinary FT at the center, whose 

properties are well known. 
The fractional convolution theorem is first derived as an extension 

of the familiar convolution theorem of the ordinary FT and serves 
as a basis for unambiguously defining a whole class of fractional 

operations. 
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IV) n») ?.(») r /(') <rs f* 1/c. 9 
^f | FT link 

. Fig. 1.    FKT structure. 

II.  FRT DEFlNmON 

Based on the ordinary FT definition 

V"-3-   J-x 
(1) 

taken to be of order a = 1, the FRT of order a is typically defined as 

/„(») = C. e>4-' ^= jT [/(Or"-'*],-*-" *      (2) 

where o„. r., and C are coefficients associated with each fraction a 

2 tau n siu a 

in which a = ax/2 expresses a as a fraction of x/2. and the ± 

choice represents sgn(siu n). 
The sequence of internal operations in (2) is shown in Fig. 1 and 

consists of first chirping the input signal /(f) by adding quadratic 
phase of rale &„. followed by an ordinary FT in the "frequency- 
variable v = c.n. and then scaling the frequency v to the fractional 
domain variable u = f/r„. thus giving F.i«) = />/r„). which 
is then amplitude scaled by C. and chirped with rate bn in « to 
finally yield /„(«). The integral character of the FRT thus resides 
in the ordinary FT link at its center, and this provides the basis for 

the method. 
Several properties of the FRT are presented in the literature as 

extensions of corresponding properties of the FT. including the FRT 
of operations involving two functions, notably ordinary multiplication 
and convolution (I]- Under the ordinary FT (1). the latter operations 
are very simply related by the convolution theorem, which stales that 
a convolution in one domain transforms to a multiplication in the 
alternative domain. For time domain convolution, we have 

FU) \pm*. 

Hf)   =  -/in 

HU)    =    CVU) 

(3) 

and for time domain multiplication (or modulation) scaled for sym- 

metry, we have 

/(/)     v^x     HI)     =     r/O 

rui     *     HU) = cu). 
(4) 

Thus, (scaled) multiplication is the dual FT counterpart of convolu- 

tion and vice versa. 
Under the FRT. the expressions for dual counterparts of ordinary 

operations are more elaborate versions of corresponding FT duals (1|. 

III. FRT STRUCTURE OF A FRACTIONAL OPERATION 

Our strategy for defining  a fractional operation between two 

functions, represented generically by S, is encapsulated in Fig. 2. 

I053-587X/9SSI0.00C 1993 IEEE 
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ABSTRACT 

Several an-ay processing architectures have been devised for mitigation of multipath 
interference. Those algorithms have focused on rejection of terrain scattered interference, 
sidelobe and mainlobe clutter, and hot clutter. Two adaptive array architectures for re- 
jection of broadband coherent interference are developed in this paper. Both techniques 
involve uniform subbanding using the Discrete Fourier transform (DFT) or non-uniform 
subbanding using the wavelet transform (WT). In the first approach, adaptation and weight 
computation is performed independently in each subband, and in the second technique the 
Frost constrained LMS algorithm is applied to all subbands in the transform domain. Due 
to the correlated nature of the jamming signal, spatial averaging is utilized in both cases. 
The mitigation performance of both algorithms is compared for various scenarios of coher- 
ent broadband interference. This paper also focuses on evaluating and rejecting multipath 
interference due to propellers or rotor of the radar receiver aircraft or helicopter (see Figure 
5). This type.of interference is characterized by an induced doppler spread proportional 
to the angular velocity of the propeller or the rotor. Furthermore the reflected signal rep- 
resents the near-field component of the propeller scattering signatures. Spatial averaging 
followed by a transform-domain adaptive beamformer based on the Frost algorithm is used 
to reject this type of propeller generated multipath interference. 

Keywords: Adaptive arrays, coherent signals, radars, multipath 

I.      INTRODUCTION k MOTIVATION 

Several results that have recently appeared in the literature show that the rate of conver- 
gence as well as a the capability of jammer suppression of Frost adaptive array beamformer 
can be improved by adaptation in the frequency domain or the scale (wavelet) domain. Al- 
though all optimum transform domain weight solutions are equivalent, convergence can vary 
from one transform to another, depending on the attained decollation between different 
bins. 
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In sensor array processing, however, there exists the problem of correlated and coherent 
signal arrivals which is not present in temporal processing. This type of interference com- 
monly known as hot clutter or terrain scattered interference (TSI) has received considerable 
attention in the last few years particularly with the availability of a large clutter database 
known as the Mountaintop data. Conventional broadband Frost array beamformers perform 
poorly in the presence of correlated arrivals even when the constrained adaptive algorithm 
is implemented in the transform domain. An attractive alternative is to decorrelate the 
received signal via spatial averaging prior to transform-domain adaptation. Adaptation can 
then be either performed independently in each subband or according to the conventional 
Frost array beamforming architecture. 

II.     BROADBAND MITIGATION ARCHITECTURES 

A.    Full-band Adaptation 

The first approach to rejection of coherent broadband interference utilizes the architec- 
ture shown in Figure 1, using an array of M sensors each followed by K tap-delay elements. 
After demodulation, spatial averaging using the algorithm presented in [2] is first imple- 
mented. The received signal is then transformed into the frequency domain via DFT or 
into the scale domain via wavelet transform. The Constrained LMS algorithm (CLMS) is 
then applied in the corresponding transform domain. Let 

z(0 = [*i(*W0,---.*A#(01 (1) 

denote a snapshot of the received signal at M sensors. Spatial averaging generates smoothed 
estimates of the covariance matrix using 

R=1-J2Rz(k) (2) 
P Jfc=i 

where Rz is the estimated covariance matrix for a sub-array of L antennas with a received 
signal z(k) = [xk{t),...,Xk+L(t))- An array of M sensors is therefore operated as an array 
of L sensors where L < M. The Frost algorithm is then applied to transformed signal as 
shown in Figure 1 for an array of L sensors and K tap delay elements per sensor. The 
weights are computed using the iteration 

W{t+l) = P[W{t)-ny{t)X(t)] + F (3) 

where W is a weight vector of L sub-vectors each is of length K and p and F are associated 
with a predetermined constraint (see [4] for details of the algorithm). Figure 3 shows a 
sample result of the performance of the full-band adaptation algorithm described in Figure 
1 where the beam pattern of an array of 6 sensors is shown. The received signal includes 
samples due to two fully correlated jammers at 40 db jammer-to^noise ratio arriving at 
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angles of-15 and 30 degrees respectively. The desired signal is complex exponential with a 
0 db signal-to-noise ratio. The complex version of the Daubechies-6 wavelet [15] 

»(c)   =   [-0.066291, 0.110485, 0.662912, 0.662912, 0.110485, -0.066291] (4) 

O(c)   =   [-0.085581,-0.085558,0.1711163,0.171163,-0.085558,-0.085581] 

(where 3? and 0 denote the real and imaginary components of the wavelet filter coefficients) 
is then used to compute the transform of the received signal vector. The wavelet transform 
is computed as matrix x vector product y = Tx where 

T = 

Co Cl Cl C3 CA C5 0 0 0 0   " 

cs -CA C3 -c2 c\ -co 0 0 0 0 
0 0 CO Cl c-i C3 CA C5 0 0 
0 0 C5 -C4 C3 -c2 Cl -co 0 0 
0 0 0 0 CO Cl c-i C3 CA C5 

0 0 0 0 C5 -CA C3 -cj Cl -co 

CA C5 0 0 0 0 CO Cl c-i C3 

c\ -co 0 0 0 0 C5 -CA C3 -ca . 

(5) 

operating on a signal of length 10. Permutation is performed after each wavelet transfor- 
mation where the low-pass components {/} of the transform are kept in the top half and 
the high pass components {h} are rearranged in the bottom half. 

y\ rli i ''» 1 
yi hi h 
Sfe h h 
VA hi u 
ys 

ye 
- 

h 
h3 

- 
Is 

yj u hi 

ys hA h3 

yg 's hA 

. yio. ./is. [h5 J 

(6) 

A wavelet transformation matrix with only half the dimension of the previous one is applied 
next to the low pass components of y followed by permutation and so on. 

Figure 3 indicates that the best rejection performance of correlated arrivals is achieved 
via uniform subbanding using the Discrete Fourier transform. The poor performance of 
wavelet transform-domain full-band adaptation is an indication of insufficient signal decor- 
relation when block adaptive processing is applied to a non-uniformly subbanded signal. 

B.    Sub-band Adaptation 

A transform-domain adaptive beamforming scheme based on FROST's constrained LMS 
concept is devised for mitigation of correlated broadband arrivals. The incoming broadband 
signals are first decorrelated via spatial averaging as described in [7]. Non-overlapping data 
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Segments (32 samples) arriving at each sensor are then transformed either into the frequency 
domain (using the FFT) or the time-scale domain (using the wavelet transform) to produce 
32 separate channels (narrow-band). The constrained FROST LMS adaptive algorithm is 
then applied to the signals present in each channel. The task of mitigating broadband corre- 
lated arrivals is thus transformed into a group of transform- domain narrowband adaptation 
schemes. 

Figure 2 shows a schematic diagram of the proposed alternative approach to rejection 
of correlated broadband interference. The incoming signal is received by an array of M 
sensors each followed by K tap-delay elements. Spatial averaging as described above is 
also implemented in this case where signal components received by M sensors are used to 
generate a smoothed covariance matrix for an array of L sensors. The received signal is then 
subbanded into uniform contiguous subbands using the DFT or into non-uniform subbands 
using the wavelet transform. The corresponding weight in each subband is then computed 
adaptively by applying the conventional narrow-band Frost algorithm to non-overlapping 
data segments each of length K. This technique is less computationally demanding than the 
full-band adaptation scheme described earlier and convergence is generally achieved with 
fewer snapshots. 

Figure 4 shows the beam pattern obtained using the same correlated jamming scenario 
of Figure 3. Adaptation in this case is performed independently in each frequency or scale 
bin. Figure 4 shows that adaptation in each bin of the wavelet transform domain results in 
better rejection of correlated interference. 

III.     MITIGATION OF PROPELLER GENERATED MULTIPATH 

Radar returns due to scattering from a rapidly rotating structure such as a helicopter 
rotor or an engine propeller have been examined in some detail from an electromagnetics 
standpoint. The effect of such nonstationary scattering components on the detection and 
recognition performance of an airborne radar could be severe. Correlated multipath returns 
generated by a rotating scatterer may also pose a serious threat to an airborne phased 
array radar systems. The impact of this type of interference could be similar to that of 
hot clutter or terrain scattered interference depending on the size of the rotating propeller 
and its azimuth position with respect to the mainlobe of the airborne receiving antenna. 
In particular, propeller generated multipath jamming becomes a significant interference 
problem when the array-based radar receiver operates in a broadband mode. 

A model for scattering from a thin rotating scatterer is used to study the significance 
of propeller generated multipath interference. An adaptive antenna array system based on 
the Frost beamformer operating in the transform domain is then devised for mitigation of 
broadband propeller generated interference. 

A.    Radar Returns From Rotating Aircraft Blades 

Returned signals received by airborne radars are subjected to amplitude and phase 
modulation due to the rotating blades of the radar aircraft. The blades length, pitch, shape, 
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number, and frequency of rotation are all factors that determine the modulation extent of 
aircraft propellers. Several studies have examined the radar returned signal of rotors and 
propellers [5, 6], where FM modulation was depicted as the dominant effect of rotating 
blades over amplitude modulation. Furthermore, propeller blades are characterized by a 
finite number of scattering centers, namely tips of the blades and rotor hub. Radar returns 
from a propeller of P blades, each of length Li — L\ with L\ and Li being the distances of 
the blade near and far edges from the center of rotation respectively, are modeled in [5] as 

P-\ 

E 
p=0 

7(t)   _   ^i4(l3_Ily(^-^(fl+v«+i4iico.«.iB(u,r(+^))) (7) 

.    (Air Li- Lt      .„, .   /   a , 2xn\\ 
sinc IT—2—cos^sm I     ~N~) ) 

where A, wc, ur, 9 v, R and A are the wavelength and frequency of transmitted signal, 
the rotational frequency of blades, angle between propeller plane and the radar line of sight 
to its center, the radial velocity and the range of the propeller center, and a scale factor 
respectively. A sample of the signal using typical aircraft parameters is shown in Figure 6. 

The doppler frequency shift generated by propeller FM modulation is in the range of 
few KHz for a typical aircraft propeller (see Figure 7). In broadband array processing this 
type of coherent multipath interference with doppler shift results in a time-dependent array 
covariance matrix and limits the performance of an adaptive processor. 

B.    Performance Analysis 

A transform-domain broadband Frost beamformer is devised to suppress blade generated 
interference. Although this type of multipath interference is broadband coherent, spatial 
averaging prior to adaptation does not help as depicted by experimental results obtained 
during the course of this study» The reason is that multipath intereference includes delayed 
replicas of the desired signal and spatial averaging a propeller modulated version of the 
desired signal does not decorrelate the interference. 

The study assumes that the airborne radar array may be steered away from the center of 
the rotor or propeller and does not include components of multipath jamming entering the 
main beam of the array. Preliminary results indicate that a conventional Frost beamformer 
with tap-delay elements to compensate for the broadband nature of the interference is 
capable of mitigating propeller generated multipath. The number of array elements is 
also a significant factor where an array of eight to twelve auxiliaries is needed to mitigate 
multipath due to a single jammer. In summary, a broadband Frost beamformer with a 
relatively large number of degrees of freedom is capable of mitigating propeller generated 
multipath interference assuming that the scattering center of the rotor or propeller does 
not fall within the mainbeam of the receiving array. 
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IV.     CONCLUSIONS 

Two adaptive antenna architectures are proposed for mitigation of broadband coherent 
interference. Both techniques rely on spatial averaging prior to adaptation, and both in- 
corporate transform domain adaptation using either the discrete Fourier transform or the 
wavelet transform. The first technique applies the constrained frost LMS algorithm on a 
block of data, the latter approach applies the Frost adaptation method at each frequency 
or scale bin of the received signal. While they differ in processing time, both techniques 
provide sufficient mitigation of broadband interference. Transform domain adaptation helps 
not only in expediting the convergence of each array, but also in decorrelating the received 
signal. Finally propeller generated multipath interference was modeled and mitigated using 
transform domain Frost-based adaptive architecture. Propeller generated multipath inter- 
ference poses a serious threat to adaptive antenna systems which cannot be sufficiently 
mitigated using spatial averaging followed by transform domain adaptation. Further in- 
vestigation in this regard will focus on implementing a form of spatial filtering prior to 
adaptation. 
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